Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 99-107    DOI: 10.6046/gtzyyg.2015.03.17
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
青藏高原32年湿地对气候变化的空间响应
邢宇1,2
1. 中国国土资源航空物探遥感中心, 北京 100083;
2. 中国科学院生态环境研究中心, 北京 100085
Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau
XING Yu1,2
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
全文: PDF(10194 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 青藏高原是全球气候变化敏感区,其湿地状况对该区的生态安全有重要影响。基于1975年MSS,1990年TM,2000年ETM和2006年CBERS遥感数据,建立4大类10亚类湿地的遥感解译标志; 通过目视和人机交互解译,结合多年野外调查资料,获取4期湿地信息数据; 经过Kriging空间插值处理获得1962-2007年青藏高原每一年的年平均降水和气温空间数据; 应用ArcInfo软件进行Grid计算,以遥感数据的时相分布图为控制层,分别生成4期气温镶嵌图和降水镶嵌图; 使用AML宏语言实现湿地变化与气候因子(温度和降水)基于像元的相关分析、偏相关分析和复相关分析,在空间上定量分析湿地变化与气候变化的响应关系。结果表明: 青藏高原1975-2000年湿地总面积持续减少,2000年后有所回升; 以干燥为主要特征的柴达木流域、祁连山区及黄河流域的湿地变化对降水变化的响应较敏感; 在青藏高原整体升温、尤其是低温地区增温幅度较大的情况下,以冰川融水作为补给的湿地对气温变化的响应较为敏感。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙记红
苏国辉
杨辰
何书锋
关键词 面向业务海洋地质服务平台统一逻辑模型    
Abstract:The Qinghai-Tibet Plateau is an area sensitive to global climate change, and its wetland status plays an important role in the ecological security of the Plateau. Based on the remote sensing data of MSS in 1975, TM in 1990, ETM in 2000 and CBERS in 2006, the author established the interpretation keys, and obtained the wetland information data of the four periods by visual and human-computer interactive interpretation,in combination with the field data accumulated in quite a few years. The annual average precipitation and temperature spatial data were obtained by Kriging spatial interpolation processing for each year from 1962 to 2007 in the Qinghai-Tibet Plateau. With the phase distribution of the remote sensing data as the control layer, the temperature mosaic images of four periods and the precipitation mosaic images were generated by Grid computation using ArcInfo software. Using the pixel-based correlation analysis, the partial correlation analysis and multiple correlation analysis, the author analyzed quantitatively the relationship of spatial response between wetland change and climatic factors (temperature and precipitation) with AML macro language. The results show that the total area of wetlands decreased continuously in the Qinghai-Tibet Plateau from 1975 to 2000, but the total area of wetlands increased after 2000. The responses of wetland change to precipitation in the Chaidam Basin, Hexi Corridor and the Yellow River Basin characterized by dry climate are sensitive. Following the overall warming in the Qinghai-Tibet Plateau, the responses of the changes of the wetland supplied by the glacial melt water to the temperature of the region are sensitive, especially in the case of the large magnitude of warming in the low-temperature region.
Key wordsbusiness-oriented    marine geology    service platform    unified logical model
收稿日期: 2014-12-08      出版日期: 2015-07-23
:  TP79  
基金资助:中国地质调查局地质调查项目"青藏高原生态地质环境遥感调查与监测"(编号: 1212010510218)资助。
作者简介: 邢宇(1982-),女,博士后,主要从事资源环境遥感与GIS应用研究。Email:xingyurs@163.com。
引用本文:   
邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27(3): 99-107.
XING Yu. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 99-107.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.17      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/99
[1] 白军红,欧阳华,徐惠风,等.青藏高原湿地研究进展[J].地理科学进展,2004,23(4):1-9. Bai J H,Ouyang H,Xu H F,et al.Advances in studies of wetlands in Qinghai-Tibet Plateau[J].Progress in Geography,2004,23(4):1-9.
[2] 孙妍.基于RS和GIS的若尔盖高原湿地景观格局分析[D].长春:东北师范大,2009. Sun Y.The Analysis of Zoige Plateau Alpine Wetland's Landscape Pattern Based on RS and GIS[D].Changchun:Northeast Normal University,2009.
[3] 陈永富,刘华,邹文涛,等.三江源高寒湿地动态变化趋势分析[J].林业科学,2012,48(10):70-76. Chen Y F,Liu H,Zou W T,et al.Analysis of dynamic change trend of alpine wetlands in three rivers'source region[J].Scientia Silvae Sinicae,2012,48(10):70-76.
[4] 王春连.拉萨河流域湿地变化研究[D].北京:中国科学院大学,2010. Wang C L.The Study of Wetland Changes in Lhasa River Basin[D].Beijing:University of Chinese Academy of Sciences,2010.
[5] Li F P,Xu Z X,Feng Y C,et al.Changes of land cover in the Yarlung Tsangpo River Basin from 1985 to 2005[J].Environment Earth Sciences,2013,68(1):181-188.
[6] Hirota M,Kawada K,Hu Q W,et al.Net primary productivity and spatial distribution of vegetation in an alpine wetland,Qinghai-Tibetan Plateau[J].Limnology,2007,8(2):161-170.
[7] 汪芳.青藏铁路沿线湿地生态风险评价研究[D].成都:西南交通大学,2008. Wang F.Ecological Risk Assessment for the Wetland Aside Xizang Railway[D].Chengdu:Southwest Jiaotong University,2008.
[8] 邢宇,姜琦刚,李文庆,等.青藏高原湿地景观空间格局的变化[J].生态环境学报,2009,18(3):1010-1015. Xing Y,Jiang Q G,Li W Q,et al.Landscape spatial patterns changes of the wetland in Qinghai-Tibet Plateau[J].Ecology and Environmental Sciences,2009,18(3):1010-1015.
[9] 张楼香,阮仁宗,夏双.洪泽湖湿地纹理特征参数分析[J].国土资源遥感,2015,27(1):75-80.doi:10.6046/gtzyyg.2015.01.12. Zhang L X,Ruan R Z,Xia S.Parameter analysis of image texture of wetland in the Hongze Lake[J].Remote Sensing for Land and Resources,2015,27(1):75-80.doi:10.6046/gtzyyg.2015.01.12.
[10] 曾光,高会军,朱刚.近32年塔里木盆地与准噶尔盆地湿地演化遥感分析[J].国土资源遥感,2013,25(3):118-123.doi:10.6046/gtzyyg.2013.03.20. Zeng G,Gao H J,Zhu G.Analysis of wetlands evolution process between Tarim Basin and Junggar Basin in the past 32 years[J].Remote Sensing for Land and Resources,2013,25(3):118-123.doi:10.6046/gtzyyg.2013.03.20.
[11] 方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社,2009. Fang H B,Zhao F Y,Zhang Z D,et al.Remote Sensing Survey and Evolution Study of Ecological and Geological Environment in Qinghai-Tibet Plateau[M].Beijing:Geological Publishing House,2009.
[12] 严婷婷,边红枫,廖桂项,等.森林湿地遥感信息提取方法研究现状[J].国土资源遥感,2014,26(2):11-18.doi:10.6046/gtzyyg.2014.02.03. Yan T T,Bian H F,Liao G X,et al.Research status of methods for mapping forested wetlands based on remote sensing[J].Remote Sensing for Land and Resources,2014,26(2):11-18.doi:10.6046/gtzyyg.2014.02.03.
[13] 杜培军,陈宇,谭琨.江苏滨海湿地土地利用/覆盖变化与地表温度响应遥感监测[J].国土资源遥感,2014,26(2):112-120.doi:10.6046/gtzyyg.2014.02.19. Du P J,Chen Y,Tan K.The remote sensing monitoring of land use/cover change and land surface temperature responses over the coastal wetland in Jiangsu[J].Remote Sensing for Land and Resources, 2014,26(2):112-120.doi:10.6046/gtzyyg.2014.02.19.
[14] 李月臣,宫鹏,刘春霞,等.北方13省1982年-1999年植被变化及其与气候因子的关系[J]. 资源科学,2006,28(2):109-117. Li Y C,Gong P,Liu C X,et al.Vegetation cover changes and correlation with climatic factors in northern China during 1982-1999[J].Resources Science,2006,28(2):109-117.
[15] 国志兴,张晓宁,王宗明,等.东北地区植被物候对气候变化的响应[J].生态学杂志,2010,29(3):578-585. Guo Z X,Zhang X N,Wang Z M,et al.Responses of vegetation phenology in Northeast China to climate change[J].Chinese Journal of Ecology,2010,29(3):578-585.
[16] 贾俊平.统计学基础[M].2版.北京:中国人民大学出版社,2014. Jia J P.Fundamental Statistics[M].2nd ed.Beijing:China Renmin University Press,2014.
[17] 尹锴,田亦陈,袁超,等.基于CASA模型的北京植被NPP时空格局及其因子解释[J].国土资源遥感,2015,27(1):133-139.doi:10.6046/gtzyyg.2015.01.21. Yin K,Tian Y C,Yuan C,et al.NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model[J].Remote Sensing for Land and Resources,2015,27(1):133-139.doi:10.6046/gtzyyg.2015.01.21.
[18] 张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010,22(s1).12. Zhang R J,Fang H B,Zhao F Y.The evolution of existing glaciers in the past 30 years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010,22(s1).12.
[1] 史园莉, 孙中平, 姜俊, 高乾, 孙浩, 闻瑞红. 环境遥感云服务平台与高性能平台对比分析[J]. 国土资源遥感, 2019, 31(2): 240-245.
[2] 孙记红, 苏国辉, 杨辰, 何书锋. 面向业务的海洋地质数据服务平台构建方法[J]. 国土资源遥感, 2015, 27(2): 190-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发