Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 147-153    DOI: 10.6046/gtzyyg.2018.02.20
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
顾及矿物粒径的月表虹湾地区矿物填图
董晓莹1(), 林伟华1(), 刘福江1, 张琪1, 常远2
1.中国地质大学(武汉)信息工程学院,武汉 430074
2.吉林省交通规划设计院,长春 130021
Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes
Xiaoying DONG1(), Weihua LIN1(), Fujiang LIU1, Qi ZHANG1, Yuan CHANG2
1. Department of Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China
2. Jilin Provincial Communication Planning and Design Institute, Changchun 130021, China
全文: PDF(3209 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

月表矿物丰度及其分布的研究对月球资源利用有重要的指导意义。Hapke模型是月表研究最常用的一种模型,粒径是该模型计算时必须明确的参数之一。为了研究月表5种主要矿物(单斜辉石、斜方辉石、斜长石、橄榄石和钛铁矿)的丰度及分布情况,在顾及矿物粒径对其光谱影响的情况下,利用Relab光谱库数据和Hapke辐射传输模型,采用全约束线性分解的方法,建立了5种矿物的反演模型,得到上述5种矿物的模型相关性分别为0.98,0.98,0.83,0.91和0.50,并用Apollo采样点数据对模型精度进行了验证,最后将模型应用到月表虹湾地区的印度探月卫星月球矿物制图仪(moon mineralogy mapper,M 3)高光谱影像上,得到了虹湾地区5种矿物的丰度分布图。结果表明,顾及矿物粒径的全约束线性分解方法可用于月表矿物分布特征研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董晓莹
林伟华
刘福江
张琪
常远
关键词 虹湾矿物粒径全约束线性分解M 3    
Abstract

The distribution of the mineral abundances on lunar surface has a significant meaning. Hapke model is one of the most usually used methods for studying lunar surface, and particle size is one of the parameters that must be clearly understood in doing model calculation. Nevertheless, the research on grain size remains very insufficient. To study the distribution of the abundances of five main minerals, i.e., clinopyroxene, orthopyroxene, plagioclase, olivine and ilmenite, the authors considered the influence of grain size and built inverse models of these five minerals by using fully constrained linear-unmixing method with Relab data based on Hapke radioative transfer model, with the correlation coefficients of these five minerals being 0.98, 0.98, 0.83, 0.91 and 0.50. Furthermore, the accuracy of this models was verified by using data of Apollo sampling points . At last, the lunar minerals abundance distribution maps of Sinus Iridum were compiled by applying the models to the M 3 hyperspectral data,which shows that the fully constrained linear-unmixing method in consideration of mineral grain sizes can be used to study lunar mineral abundance distribution.

Key wordsSinus Iridum    mineral grain size    full constrained linear-unmixing    M 3
收稿日期: 2016-10-13      出版日期: 2018-05-30
:  P691  
基金资助:湖北省2014年面上自然科学基金项目“基于主动学习的遥感大训练样本选择优化”(编号: 2014CFB911);国家“十二五”“863”项目“大规模空间数据融合分析关键技术与应用服务系统”(编号: 2014AA121401);“大规模空间数据挖掘关键技术研究”(编号: 2014AA123001)
通讯作者: 林伟华
引用本文:   
董晓莹, 林伟华, 刘福江, 张琪, 常远. 顾及矿物粒径的月表虹湾地区矿物填图[J]. 国土资源遥感, 2018, 30(2): 147-153.
Xiaoying DONG, Weihua LIN, Fujiang LIU, Qi ZHANG, Yuan CHANG. Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes. Remote Sensing for Land & Resources, 2018, 30(2): 147-153.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.20      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/147
成像
模式
视场
/km
光谱范
围/nm
采样间
隔/nm
空间分
辨率/m
波段
数/个
光谱分
辨率/nm
target 40 430~3 000 10 70 261 10
global 40 430~3 000 10 140 85 20/40
Tab.1  M3主要技术和性能指标
矿物类别 样本编号 光谱范围 DU DL <D>
单斜辉石 LS-CMP-009 350~2 600 250 5 20
斜方辉石 LS-CMP-012 350~2 600 250 5 20
斜长石 LS-CMP-011 350~2 600 500 5 23
橄榄石 LR-CMP-014 300~2 600 45 5 11
钛铁矿 PI-CMP-006 300~2 600 75 5 14
Tab.2  Relab光谱库端元矿物光学常数信息
Fig.1  不同端元矿物分解含量与真实含量的统计关系
样品编号 实测结果 反演结果
辉石 斜长石 橄榄石 钛铁矿 熔融玻璃 辉石 斜长石 橄榄石 钛铁矿
12030 21.4 14.0 3.7 3.2 49.8 15.7 62.8 11.2 13.3
15071 16.7 19.4 2.8 1.8 49.2 13.0 64.5 11.0 13.2
71501 13.7 19.8 3.4 9.7 44.8 9.8 66.6 11.1 22.1
67461 4.1 61.0 1.5 0.3 32.4 3.3 98.8 8.3 7.0
14141 10.9 28.0 1.6 1.1 48.6 8.9 79.2 9.5 10.3
14163 13.8 18.3 2.1 0.9 58.5 9.1 81.2 7.2 13.3
Tab.3  Apollo 采样点矿物反演结果与实测结果对比
Fig.2  Apollo采样点矿物反演结果与实测结果统计关系
Fig.3  M3数据处理流程
Fig.4  虹湾地区矿物分布
[1] Li L, Lucey P G. Use of multiple endmember spectral mixture analysis and radiative transfer model to derive lunar mineral abundance maps [C]//Proceedings of 40th Lunar and Planetary Science Conference.Woodlands:Lunar and Planetary Science, 2009.
[2] Pieters C M, Boardman J, Buratti B , et al. The moon mineralogy mapper(M 3)on Chandrayaan-1 [J]. Current Science, 2009,96(4):500-505.
doi: 10.1371/journal.pone.0004525
[3] 李二森 . 高光谱遥感图像混合像元分解的理论与算法研究[D]. 郑州:解放军信息工程大学, 2011.
Li E S . Research on Theory and Algorithms of Mixed Pixel Decomposition for Hyperspectral Remote Sensing Image[D]. Zhengzhou:PLA Information Engineering University, 2011.
[4] Keshava N, Mustard J F . Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002,19(1):44-57.
doi: 10.1109/79.974727
[5] Johnson P E, Smith M O, Taylor-George S , et al. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures[J]. Journal of Geophysical Research, 1983,88(B4):3557-3561.
doi: 10.1029/JB088iB04p03557
[6] Mustard J F, Pieters C M . Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J]. Journal of Geophysical Research, 1989,94(B10):13619-13634.
doi: 10.1029/JB094iB10p13619
[7] 闫柏琨, 甘甫平, 王润生 , 等. 基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图[J]. 国土资源遥感, 2009,21(4):19-24.doi: 10.6046/gtzyyg.2009.04.04.
doi: 10.6046/gtzyyg.2009.04.04
Yan B K, Gan F P, Wang R S , et al. Mineral mapping of the lunar surface using Clementine UV/VIS/NIR data based on unmixing of spectral[J]. Remote Sensing for Land and Resources, 2009,21(4):19-24.doi: 10.6046/gtzyyg.2009.04.04.
[8] Yan B K, Wang R S, Gan F P , et al. Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model[J]. Icarus, 2010,208(1):11-19.
doi: 10.1016/j.icarus.2010.01.030
[9] Combe J P, McCord T B, Hayne P O , et al.Mapping of lunar volatiles with moon mineralogy mapper spectra:A challenge due to thermal emission[C]//EPSC-DPS Joint Meeting 2011.Nantes,France:COPERNICUS, 2011.
[10] Li S, Li L . Radiative transfer modeling for quantifying lunar surface minerals,particle size,and submicroscopic metallic Fe[J]. Journal of Geophysical Research, 2011,116(E9):E09001.
doi: 10.1029/2011JE003837
[11] Nelson M L, Clark R N. Comparison of different measures of the grain size in Hapke modeling [C]//Bulletin of the American Astronomical Society, 1990,22:1033.
[12] 张渊智, 安璐, 黄朝君 . 基于太空风化的尖晶石二向性反射特性研究[J]. 深空探测学报, 2014,1(3):210-213.
doi: 10.15982/j.issn.2095-7777.2014.03.008
Zhang Y Z, An L, Huang Z J . The study of bidirectional reflectance feature of the spinel based on the space weathering[J]. Journal of Deep Space Exploration, 2014,1(3):210-213.
[13] 吴昀昭, 郑永春, 邹永廖 , 等. 基于非线性混合模型研究太空风化对月壤光谱的影响[J]. 空间科学学报, 2010,30(2):154-159.
Wu Y Z, Zheng Y C, Zou Y L , et al. Research of the optical effects of space weathering on lunar regolith based on the nonlinear mixing model[J]. Chinese Journal of Space Science, 2010,30(2):154-159.
[14] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005: 38.
Ouyang Z Y. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005: 38.
[15] 路鹏, 陈圣波, 崔腾飞 , 等. 月球表面矿物二向性反射特性实验研究[J]. 岩石学报, 2016,32(1):107-112.
Lu P, Chen S B, Cui T F , et al. Experimental study on bidirectional reflectance characteristics of minerals on lunar surface[J]. Acta Petrologica Sinica, 2016,32(1):107-112.
[16] 崔腾飞 . 月表矿物二向性反射模型研究[D]. 长春:吉林大学, 2012.
Cui T F . Study on Bidirectional Reflectance Model of Minerals on Lunar Surface[D]. Changchun:Jilin University, 2012.
[17] Hapke B. Theory of Reflectance and Emittance Spectroscopy[M]. New York: Cambridge University Press, 1993.
[18] Hapke B . Space weathering from Mercury to the asteroid belt[J]. Journal of Geophysical Research, 2001,106(E5):10039-10073.
doi: 10.1029/2000JE001338
[19] 闫柏琨, 李建忠, 甘甫平 , 等. 一种月壤主要矿物组分含量反演的光谱解混方法[J]. 光谱学与光谱分析, 2012,32(12):3335-3340.
Yan B K, Li J Z, Gan F P , et al. A spectral unmixing method of estimating main minerals abundance of lunar soils[J]. Spectroscopy and Spectral Analysis, 2012,32(12):3335-3340.
[20] Heinz D C, Chang C I . Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3):529-545.
doi: 10.1109/36.911111
[21] 燕守勋, 张兵, 赵永超 , 等. 高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J]. 遥感技术与应用, 2004,19(1):52-63.
Yan S X, Zhang B, Zhao Y C , et al. Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2004,19(1):52-63.
[22] 王振超 . 月壤光谱特性分析与月表矿物信息定量反演[D].北京:中国地质大学(北京), 2011.
Wang Z C . Analysis of Spectral Characteristics of Lunar Soil and Quantitative Inversion of Minerals Information[D].Beijing: China University of Geoscience(Beijing), 2011.
[23] 张琪, 刘福江, 李婵 , 等. 全约束线性分解的月表虹湾地区矿物含量反演[J]. 国土资源遥感, 2016,28(1):7-14.doi: 10.6046/gtzyyg.2016.01.02.
doi: 10.6046/gtzyyg.2016.01.02
Zhang Q, Liu F J, Li C , et al. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. Remote Sensing for Land and Resources, 2016,28(1):7-14.doi: 10.6046/gtzyyg.2016.01.02.
[24] Lucey P G . Mineral maps of the Moon[J]. Geophysical Research Letters, 2004,31(8):L08701.
doi: 10.1029/2003GL019406
[25] 薛彬, 杨建峰, 赵葆常 . 月球表面主要矿物反射光谱特性研究[J]. 地球物理学进展, 2004,19(3):717-720.
doi: 10.3969/j.issn.1004-2903.2004.03.037
Xue B, Yang J F, Zhao B C . The study of spectral feature of major minerals on the lunar surface[J]. Progress in Geophysics, 2004,19(3):717-720.
[26] 李婵, 刘福江, 郑小坡 , 等. 月表虹湾地区辉石及橄榄石含量反演[J]. 中国科学(物理学力学天文学), 2013,43(11):1387-1394.
Li C, Liu F J, Zheng X P , et al. Lunar pyroxene and olivine abundance analysis of Sinus Iridum[J]. Science China Physics,Mechanics and Astronomy, 2013,43(11):1387-1394.
[27] Staid M I, Pieters C M . Mineralogy of the last lunar basalts:Results from Clementine[J]. Journal of Geophysical Research, 2001,106(E11):27887-27900.
doi: 10.1029/2000JE001387
[28] 付晓辉, 邹永廖, 郑永春 , 等. 月球表面太空风化作用及其效应[J]. 空间科学学报, 2011,31(6):705-715.
Fu X H, Zou Y L, Zheng Y C , et al. Space weathering processes and effects on the Moon[J]. Chinese Journal of Space Science, 2011,31(6):705-715.
[29] 王景然 . 基于地形校正月表矿物含量反演研究[D]. 长春:吉林大学, 2012.
Wang J R . Topographic Correction Based Retrieval of Lunar Mineral Abundance[D]. Changchun:Jilin University, 2012.
[1] 张琪, 刘福江, 李婵, 乔乐, 郭振辉, 柴春鹏. 全约束线性分解的月表虹湾地区矿物含量反演[J]. 国土资源遥感, 2016, 28(1): 7-14.
[2] 奚晓旭, 刘少峰, 吴志远, 韦蔚, 焦中虎, 李力. 基于粗糙度的月表虹湾地区地形地貌解译[J]. 国土资源遥感, 2012, 24(1): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发