Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 110-116    DOI: 10.6046/gtzyyg.2019.01.15
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
土壤有机质含量地面高光谱估测模型对比分析
王永敏1, 李西灿2, 田林亚1, 贾斌3, 杨惠4
1.河海大学地球科学与工程学院,南京 211100
2.山东农业大学信息科学与工程学院,泰安 271018
3.中建四局第三建筑工程有限公司,遵义 563000
4.东南大学交通学院,南京 210000
Comparison and analysis of estimation models of soil organic matter content established by hyperspectral on ground
Yongmin WANG1, Xican LI2, Linya TIAN1, Bin JIA3, Hui YANG4
1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2.College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
3.CCFED the Third Construction Engineering Co., Zunyi 563000, China
4.School of Transportation, Southeast University, Nanjing 210000, China
全文: PDF(2002 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

采用高光谱技术获得的数据进行土壤有机质含量的反演和估测是近年来的研究热点。为确定有效的估测建模方法,利用地面实测的土壤高光谱反射率及有机质含量等数据,采用小波分析方法实现去噪,包络线去除法实现建模参数提取和数据量压缩,结合多种不同的数据变换方法,利用BP神经网络法、多元线性回归法及最小二乘回归法建立不同的估测模型。对比发现,BP神经网络模型的估测效果优于回归模型,其中结合对数的平方变换和神经网络所建立的模型为最优估测模型,模型的决定系数达到0.933,检验样本的均方根误差达到0.069。实验证明,BP神经网络+对数的平方变换模型的学习机制适用于土壤有机质含量地面高光谱估测且效果好。通过在建模因子层面上进行数据变换建立了较好的估测模型,其研究方法、模型和结论,对土壤有机质含量地面高光谱估测具有一定的参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永敏
李西灿
田林亚
贾斌
杨惠
关键词 地面高光谱土壤有机质数据变换估测模型对比分析    
Abstract

Using the data obtained by hyperspectral techniques to estimate the content of soil organic matter is a hotspot in recent years. For the purpose of determining the effective estimation modeling method, specific data such as reflectance obtained by hyperspectral on ground and organic matter content were used in this paper. Wavelet analysis was used to remove the noise, and continuum removal was used to extract the parameters and compress the data. Combining a variety of different data transformation methods and utilizing BP neural networks, multiple linear regression (MLR) and least squares regression (LSR), many different estimation models of soil were established. It is found that the neural network method is superior to the regression model among various data transformation methods after comparing different estimation models established by the three modeling methods. The optimal estimation model is the model established by the combination of logarithmic square transformation and neural network. The R 2 of the model is 0.933 and the RMSE is 0.069. The authors creatively carried out the data transformation at the modeling factor level and established the good estimation model. It is shown that the learning mechanism of BP + LS model is suitable for hyperspectral estimation of soil organic matter and works well. The methods, models and conclusions of this paper have some reference significance for the hyperspectral estimation of soil organic matter.

Key wordshyperspectra on ground    soil organic matter    data conversion    estimation model    comparative analysis
收稿日期: 2018-01-31      出版日期: 2019-03-15
:  TP79  
基金资助:国家自然科学基金项目“黄河三角洲典型生态脆弱区土壤质量退化特征及其对土地利用变化的响应”(41271235);山东省自然科学基金项目“基于灰色理论的土壤有机质高光谱估测模式研究”共同资助(ZR2016DM03)
作者简介: 王永敏(1993-),女,硕士,主要从事遥感技术与应用方面的研究。Email: 594287425@qq.com。
引用本文:   
王永敏, 李西灿, 田林亚, 贾斌, 杨惠. 土壤有机质含量地面高光谱估测模型对比分析[J]. 国土资源遥感, 2019, 31(1): 110-116.
Yongmin WANG, Xican LI, Linya TIAN, Bin JIA, Hui YANG. Comparison and analysis of estimation models of soil organic matter content established by hyperspectral on ground. Remote Sensing for Land & Resources, 2019, 31(1): 110-116.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.15      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/110
Fig.1  土壤样本采集区域分布示意图
样本集 有机质最小值 有机质最大值 有机质平均值 有机质标准差 水含量最小值 水含量最大值 水含量平均值 水含量标准差
总体样本 0.124 1.289 0.600 0.250 0.46 38.65 9.87 7.65
建模样本 0.124 1.289 0.608 0.238 4.83 38.65 9.65 7.62
检验样本 0.176 1.289 0.575 0.241 0.46 35.32 9.97 7.69
Tab.1  土壤样本有机质含量和水含量统计
Fig.2  小波去噪前后光谱反射率与有机质含量相关系数对比
Fig.3  包络线去除结果对比
变换方法 AP DS MP MH MD LM
原始 -0.205 -0.217 -0.196 -0.151 -0.171 0.230
SQ -0.288 -0.380 -0.286 -0.172 -0.365 0.296
RE 0.296 0.357 0.356 0.256 0.386 -0.295
EXP 0.482 -0.534 -0.518 -0.472 -0.484 0.305
LOG -0.390 -0.362 -0.211 -0.209 -0.318 0.295
ES 0.431 -0.437 -0.368 -0.428 -0.499 0.401
LS -0.539 -0.596 -0. 432 -0.631 -0.628 0.521
DE1 -0.282 -0.329 -0.287 -0.273 -0.286 0.224
LGD1 -0.462 -0.309 0.508 0.414 0.511 0.424
EXD1 0.337 -0.321 0.409 0.458 0.406 -0.245
Tab.2  相关系数对比
Fig.4  3种模型的R2RMSE对比
参数 方法 SQ RE EXP LOG ES LS DE1 LGD1 EXD1 均值
R2 BP 0.811 0.807 0.885 0.812 0.828 0.933 0.852 0.839 0.841 0.845
MLR 0.778 0.804 0.835 0.731 0.859 0.879 0.792 0.845 0.786 0.812
LSR 0.815 0.797 0.871 0.826 0.833 0.887 0.861 0.847 0.802 0.839
RMSE BP 0.114 0.117 0.081 0.110 0.102 0.069 0.092 0.107 0.105 0.099
MLR 0.122 0.121 0.099 0.131 0.093 0.092 0.118 0.121 0.123 0.113
LSR 0.119 0.125 0.097 0.114 0.115 0.085 0.084 0.092 0.114 0.105
sig BP 0.015 0.019 0.001 0.011 0.006 0.00 0.003 0.013 0.007 0.008
MLR 0.027 0.031 0.033 0.042 0.002 0.001 0.013 0.006 0.035 0.021
LSR 0.019 0.028 0.001 0.021 0.005 0.001 0.002 0.007 0.016 0.011
Tab.3  27种估测模型检验样本集结果统计
Fig.5  估测值与实测值对比结果
[1] 王晓 . 土壤含水量高光谱特性与估测模型研究[D]. 泰安:山东农业大学, 2012.
Wang X . Studies on Soil Moisture Hyper-spectrum Characteristics and Estimating Model[D]. Taian:Shandong Agricultural University, 2012.
[2] 邱华旭, 黄张裕, 李希灿 . 土壤性质指标光谱反演数据变换模型研究[J]. 测绘科学, 2013,38(3):131-133.
Qiu H X, Huang Z Y, Li X C . Data transformation model analysis on spectral retrieved deduction of soil properties index[J]. Science of Surveying and Mapping, 2013,38(3):131-133.
[3] 郭超凡, 郭逍宇 . 基于可见光波段包络线去除的湿地植物叶片叶绿素估算[J]. 生态学报, 2016,36(20):6538-6546.
doi: 10.5846/stxb201507091460
Guo C F, Guo X Y . Estimation of wetland plant leaf chlorophyll content based on continuum removal in the visible domain[J]. Acta Ecologica Sinica, 2016,36(20):6538-6546.
[4] Kokaly R F, Clark R N . Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999,67(3):267-287.
doi: 10.1016/S0034-4257(98)00084-4
[5] 陈增文, 陈光水, 钟羡芳 , 等. 基于高光谱遥感的土壤有机碳含量估算研究进展[J]. 亚热带资源与环境学报, 2009,4(1):78-87.
doi: 10.3969/j.issn.1673-7105.2009.01.011
Chen Z W, Chen G S, Zhong X F , et al. Review on estimation of soil organic carbon content based on hyperspectral measurements[J]. Journal of Subtropical Resources and Environment, 2009,4(1):78-87.
[6] 彭杰, 张杨珠, 周清 , 等. 土壤理化特性与土壤光谱特征关系的研究进展[J]. 土壤通报, 2009,40(5):1204-1208.
Peng J, Zhang Y Z, Zhou Q , et al. The progress on the relationship physics-chemistry properties with spectrum characteristic of the soil[J]. Chinese Journal of Soil Science, 2009,40(5):1204-1208.
[7] 廖钦洪, 顾晓鹤, 李存军 , 等. 基于连续小波变换的潮土有机质含量高光谱估算[J]. 农业工程学报, 2012,28(23):132-139.
doi: 10.3969/j.issn.1002-6819.2012.23.018
Liao Q H, Gu X H, Li C J , et al. Estimation of fluvo-aquic soil organic matter content from hyperspectral reflectance based on continuous wavelet transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(23):132-139.
[8] Liu H J, Zhang Y Z, Zhang B , et al. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China[J]. Environmental Monitoring and Assessment, 2009,154(1-4):147-154.
doi: 10.1007/s10661-008-0385-4 pmid: 18560985
[9] Karnieli A, Verchovsky I, Hall J K , et al. Geographic information system for semi-detailed mapping of soils in semi-arid region[J]. Geocarto International, 1998,13(3):29-42.
doi: 10.1080/10106049809354650
[10] 沈润平, 丁国香, 魏国栓 , 等. 基于人工神经网络的土壤有机质含量高光谱反演[J]. 土壤学报, 2009,46(3):391-397.
doi: 10.3321/j.issn:0564-3929.2009.03.003
Shen R P, Ding G X, Wei G S , et al. Retrieval of soil organic matter content from hyper-spectrum based on ANN[J]. Acta Pedologica Sinica, 2009,46(3):391-397.
[11] 于雷, 洪永胜, 周勇 , 等. 连续小波变换高光谱数据的土壤有机质含量反演模型构建[J]. 光谱学与光谱分析, 2016,36(5):1428-1433.
Yu L, Hong Y S, Zhou Y , et al. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation[J]. Spectroscopy and Spectral Analysis, 2016,36(5):1428-1433.
[12] 彭小婷, 高文秀, 王俊杰 . 基于包络线去除和偏最小二乘的土壤参数光谱反演[J]. 武汉大学学报(信息科学版), 2014,39(7):862-866.
doi: 10.13203/j.whugis20130202
Peng X T, Gao W X, Wang J J . Inversion of soil parameters from hyperspectra based on continuum removal and partial least squares regression[J]. Geomatics and Information Science of Wuhan University, 2014,39(7):862-866.
[13] 孔玲军 . MATLAB小波分析超级学习手册[M]. 北京: 人民邮电出版社, 2014: 100-160.
Kong L J. Super Learning Manual of Wavelet Analysis Based on MATLAB[M]. Beijing: Posts and Telecom Press, 2014: 100-160.
[14] Ben-Dor E, Banin A . Visible and near infrared(0.4 -1.1 μm) analysis of arid and semiarid soil[J]. Remote Sensing of Environment, 1994,48(3):261-274.
doi: 10.1016/0034-4257(94)90001-9
[15] 李希灿, 王静, 李玉环 , 等. 基于模糊集分析的土壤质量指标高光谱反演[J]. 地理与地理信息科学, 2008,24(4):25-28.
Li X C, Wang J, Li Y H , et al. High spectral retrieved deduction of soil quality index based on fuzzy sets analysis[J]. Geography and Geo-Information Science, 2008,24(4):25-28.
[16] 沈士喆, 张小龙, 衡伟 . 一种自适应阈值的预筛选Harris角点检测方法[J]. 数据采集与处理, 2011,26(2):207-213.
doi: 10.3969/j.issn.1004-9037.2011.02.016
Shen S Z, Zhang X L, Heng W . Improved Harris corner detection algorithm based on auto-adaptive threshold and pre-selection[J]. Journal of Data Acquisition and Processing, 2011,26(2):207-213.
[17] 邓小炼, 王长耀, 亢庆 , 等. 一种基于角点提取的遥感影像地面控制点自适应匹配算法[J]. 宇航学报, 2006,27(1):45-50,88.
doi: 10.3321/j.issn:1000-1328.2006.01.010
Deng X L, Wang C Y, Kang Q , et al. An adaptive matching algorithm for ground control point of remote sensing image based on corner extraction[J]. Journal of Astronautics, 2006,27(1):45-50,88.
[18] 何挺, 王静, 林宗坚 , 等. 土壤有机质光谱特征研究[J]. 武汉大学学报(信息科学版), 2006,31(11):975-979.
doi: 10.3321/j.issn:1671-8860.2006.11.009
He T, Wang J, Lin Z J , et al. Spectral features of soil organic matter[J]. Geomatics and Information Science of Wuhan University, 2006,31(11):975-979.
[19] 郭斗斗, 黄绍敏, 张水清 , 等. 多种潮土有机质高光谱预测模型的对比分析[J]. 农业工程学报, 2014,30(21):192-200.
doi: 10.3969/j.issn.1002-6819.2014.21.023
Guo D D, Huang S M, Zhang S Q , et al. Comparative analysis of various hyperspectral prediction models of fluvo-aquicsoil organic matter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(21):192-200.
[1] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[2] 贺军亮, 韩超山, 韦锐, 周智勇, 东启亮. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019, 31(4): 96-103.
[3] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2): 1-11.
[4] 马玥, 姜琦刚, 李远华, 肖晨超, 付长亮. 国内外商用遥感卫星的定量化对比分析与评估[J]. 国土资源遥感, 2016, 28(1): 1-6.
[5] 官晓, 周萍, 陈圣波. 基于地面实测光谱的土壤有机质含量预测[J]. 国土资源遥感, 2014, 26(2): 105-111.
[6] 郝敏, 吴虹, 贾志强, 黄大宁, 柳艳, 关震. 基于断裂构造遥感影像特征对比分析的花山岩体与姑婆山岩体成因关联性探讨[J]. 国土资源遥感, 2014, 26(2): 162-169.
[7] 钮立明, 蒙继华, 吴炳方, 陈雪洋, 杜鑫, 张飞飞. HJ-1A星HSI数据2级产品处理流程研究[J]. 国土资源遥感, 2011, 23(1): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发