Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 54-62    DOI: 10.6046/gtzyyg.2020.02.08
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合笔画宽度变换与几何特征集的高分一号遥感图像河流提取
张祝鸿, 王保云(), 孙玉梅, 李才东, 孙显辰, 张玲莉
云南师范大学信息学院,昆明 650500
River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set
Zhuhong ZHANG, Baoyun WANG(), Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG
School of Information Science and Technology, Yunnan Normal University, Kunmin 650500, China
全文: PDF(6419 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

从高空间分辨率遥感影像中提取河流具有诸多重要意义。目前大多数方法致力于从河流的光谱特征或纹理特征出发提取河流,但对于存在同物异谱或异物同谱现象、纹理分析尺度难以确定或噪声严重的的图像,基于水体光谱分析或纹理分析的方法并不十分适用。高空间分辨率图像中的河流一般结构不规则,更可能由于各种原因致使河流的局部与整体拥有不一样的光谱特征和纹理特征,然而在一些遥感图像中,河流可能在大范围内具有近似一致的宽度,基于此,提出了结合笔画宽度变换(stroke width transform,SWT)和几何特征集(geometric feature set,GFS)的河流提取方法。首先,使用Canny算子提取图像边缘,并把边缘图作为SWT算法的输入,得到笔画宽度图; 然后,使用连通域标记算法对其中的像元进行分组,接着根据构造的GFS来对分组之后得到的连通域进行筛选; 最后,对剩下的连通域进行孔洞填充。使用高分一号(GF-1)近红外波段进行实验的结果表明,该方法能够在完整提取目标河流的同时很好地抑制噪声。同时,该方法在提取效果和算法稳定性上明显优于乘性Duda算子和区域生长算法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张祝鸿
王保云
孙玉梅
李才东
孙显辰
张玲莉
关键词 高分一号河流提取笔画宽度变换几何特征集    
Abstract

Extracting rivers from high-resolution satellite images has many important implications. At present, most methods are devoted to extracting rivers from the spectral characteristics or texture analysis of rivers. But for the image which is with the phenomenon of the same object with different spectra or different objects with the same spectra, or has serious noise, or is hard to determine the scale of texture analysis, the method based on water spectrum analysis or texture analysis is not very suitable. The rivers in high-resolution satellite images are generally irregular in structure, and it is more likely that the rivers have different spectral features and texture features due to various reasons. However, in some satellite images, rivers may have approximately uniform width over a wide range. In view of such a situation, a river extraction method combining stroke width transform and geometric feature set is proposed innovatively. Firstly, the Canny edge detector is used to extract the edge of the image, and the edge map is used as the input of the stroke width transform algorithm to obtain the stroke width map. Then, the connected pixels are grouped by using the connected component algorithm, and next, the connected components obtained after the grouping are filtered according to the geometric feature set, and finally the remaining connected components experience the process for filling holes. Experiments using the GF-1 satellite images show that the method can suppress the noise well while extracting the target river. At the same time, compared with the Multiplicative Duda operator and the region growing algorithm, the proposed method has obvious advantages in the aspects of extraction effect and algorithm stability.

Key wordsGF-1    river extraction    stroke width transform    geometric feature set
收稿日期: 2019-05-17      出版日期: 2020-06-18
:  P237  
基金资助:国家自然科学基金项目“城镇化进程中基于蚁群行为规则的滇池流域不透水表面扩张智能体建模与模拟”(41461038);云南省大学生创新创业训练计划项目“基于面向对象遥感影像分割的怒江流域泥石流孕育区域识别”和国家自然科学基金项目“基于深度迁移学习的遥感影像中泥石流孕灾沟谷识别-以云南省为例”(61966040)
通讯作者: 王保云
作者简介: 张祝鸿(1996-),女,本科生,主要研究方向为遥感图像处理、机器学习、泥石流灾害评价及预警。Email: 2094959464@qq.com。
引用本文:   
张祝鸿, 王保云, 孙玉梅, 李才东, 孙显辰, 张玲莉. 结合笔画宽度变换与几何特征集的高分一号遥感图像河流提取[J]. 国土资源遥感, 2020, 32(2): 54-62.
Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.08      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/54
Fig.1  GF-1影像4个波段
Fig.2  结合SWT与GFS的河流识别算法流程
Fig.3  提出方法各个步骤示意图
Fig.4  SWT算法步骤示意图
Fig.5  连通区域外接圆示意图
Fig.6  连通区域外接矩形示意图
Tab.1  本文方法与MDRO和RGA提取结果对比
Fig.7  定量分析度量示意图
方法 s1 s2 s3
Com Cor Qua Com Cor Qua Com Cor Qua
MDRO 90 81.6 71.2 90.8 68.5 64.1 87.2 49.8 46.4
MDRO+GFS 83.6 100 83.6 89.8 100 89.7 86 99.5 85.7
RGA(生长阈值50) 54.6 98.8 54.2 74.5 100 74.5 65.6 100 65.6
RGA(生长阈值130) 提取失败 100 71.7 71.7 100 64.3 64.3
本文方法 99.1 96.9 96 97.7 95.5 93.3 99.4 98 97.5
方法 s4 s5 s6
Com Cor Qua Com Cor Qua Com Cor Qua
MDRO 91.2 56.5 53.6 95.5 3.3 3.3 97 6 6
MDRO+GFS 87.2 100 87.2 82.4 96.4 80 94.1 99.4 93.6
RGA(生长阈值50) 44.1 100 44.1 79.6 100 79.6 77.8 100 77.8
RGA(生长阈值130) 提取失败 96.7 59 57.8 提取失败
本文方法 96.8 95.3 92.4 98.3 95.2 93.7 99.3 99.1 98.4
Tab.2  定量方法分析结果
[1] 冷凯群. 基于PLFT及图像融合的卫星河流识别[J]. 计算机工程与设计, 2018,39(12):170-174.
Leng K Q. PLFT and images fusion-based satellite rivers detection[J]. Computer Engineering and Design, 2018,39(12):170-174.
[2] Zhang Y. A method for continuous extraction of multispectrally classified urban rivers[J]. Photogrammetric Engineering and Remote Sensing, 2000,66:991-999.
[3] Rani G M D, Viswanath K. Extraction of river from satellite images [C]// 2nd International Conference on Recent Trends in Electronics,Information & Communication Technology(RTEICT 2017).IEEE, 2017: 226-230.
[4] Matgen P, Hostache R, Schumann G, et al. Towards an automated SAR-based flood monitoring system:Lessons learned from two case studies[J]. Physics & Chemistry of the Earth, 2011,36(7):241-252.
[5] 姜浩, 冯敏, 肖桐, 等. 基于线状特征增强的TM遥感影像细小河流提取方法[J].测绘学报, 2014(7):705-710.
Jiang H, Feng M, Xiao T, et al. A narrow river extraction method based on linear feature enhancement in TM image[J].Acta Geodaetica et Cartographica Sinica, 2014(7):705-710.
[6] Dillabaugh C R, Niemann K O, Richardson D E. Semi-Automated extraction of rivers from digital imagery[J]. GeoInformatica, 2002,6(3):263-284.
doi: 10.1023/A:1019718019825
[7] 王民, 卞琼, 高路. 高分辨率遥感卫星影像的河流提取方法研究[J]. 计算机工程与应用, 2014,50(18):193-196.
Wang M, Bian Q, Gao L. High resolution satellite remote sensing images’ rivers extraction method[J]. Computer Engineering and Application, 2014,50(18):193-196.
[8] Molina R E. River extraction from high resolution satellite images [C]// International Congress on Image & Signal Processing.IEEE, 2012: 697-700.
[9] Sghaier M O, Foucher S, Lepage R. River extraction from high-resolution SAR images combining a structural feature set and mathematical morphology[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(3):1025-1038.
[10] Huang X, Zhang L, Li P. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery[J]. IEEE Geoscience & Remote Sensing Letters, 2007,4(2):260-264.
[11] He X, Wu Y. Texture feature extraction method combining nonsubsampled contour transformation with gray level co-occurrence matrix[J]. Journal of Multimedia, 2013,8(6):675-684.
[12] Sghaier M O, Foucher S, Lepage R, et al. A multiscale based approach for river extraction from SAR images using attribute filters [C]// International Geoscience and Remote Sensing Symposium(IGARSS 2018).IEEE, 2018: 9245-9248.
[13] Jameson J. Extraction of arbitrary text in natural scene image based on stroke width transform [C]// 14th International Conference on Intelligent Systems Design and Applications(ISDA 2014).IEEE, 2014: 124-128.
[14] 张国和, 黄凯, 张斌, 等. 最大稳定极值区域与笔画宽度变换的自然场景文本提取方法[J]. 西安交通大学学报, 2017,51(1):135-140.
Zhang G H, Huang K, Zhang B, et al. A natural scene text extration method based on the maximum stable extremal region and stroke width transform[J]. Journal of Xi’an Jiaotong University, 2017,51(1):135-140.
[15] Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform [C]// Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 2010).IEEE, 2010: 2963-2970.
[16] 童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006: 26.
Tong Q X, Zhang B, Zhang L F. Hyperspectral remote sensing:Theory,technology and applications[M]. Beijing: Higher Education Press, 2006: 26.
[17] 张仁华. 定量热红外遥感模型及地面实验基础[M]. 北京: 科学出版社, 2009: 74-76.
Zhang R H. Quantitative thermal infrared remote sensing model and ground experimental basis[M]. Beijing: Science Press, 2009: 74-76.
[18] Sghaier M O, Hammami I, Foucher S, et al. Stroke width transform for linear structure detection:Application to river and road extraction from high-resolution satellite images [C]// International Conference Image Analysis and Recognition(ICIAR 2017), 2017: 605-613.
[19] Canny J. A computational approach to edge detection[M]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679-698.
[20] Dillencourt M B, Samet H, Tamminen M. A general approach to connected-component labeling for arbitrary image representations[J]. Journal of the ACM, 1992,39(2):253-280.
[21] Geling G, Ionescu D. An edge detection operator for SAR images [C]// Conference on Electrical & Computer Engineering.IEEE, 1993: 707-709.
[22] 张蕾.红外图像中铁轨识别技术的研究[D].成都:电子科技大学, 2012.
Zhang L. The research on identification of rail from infrared image[D]. Chengdu:University of Electronic Science and Technology of China, 2012.
[23] Hu J, Razdan A, Femiani J C, et al. Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(12):4144-4157.
doi: 10.1109/TGRS.2007.906107
[1] 栗旭升, 刘玉锋, 陈冬花, 刘赛赛, 李虎. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3): 55-62.
[2] 彭继达, 张春桂. 基于高分一号遥感影像的植被覆盖遥感监测——以厦门市为例[J]. 国土资源遥感, 2019, 31(4): 137-142.
[3] 高晨, 徐健, 高丹, 王莉莉, 王野乔. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
[4] 廖戬, 顾行发, 占玉林, 张雅洲, 任芯雨, 师帅一. 高分一号卫星影像谐波模型模拟方法研究[J]. 国土资源遥感, 2018, 30(3): 106-112.
[5] 王瑞军, 闫柏琨, 李名松, 董双发, 孙永彬, 汪冰. 甘肃红山地区重要控矿地质单元GF-1数据遥感解译与应用[J]. 国土资源遥感, 2018, 30(2): 162-170.
[6] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[7] 王瑞军, 董双发, 孙永彬, 李婧玥. 基于高分一号卫星数据新疆索拉克地区控矿地质单元遥感解译与应用[J]. 国土资源遥感, 2017, 29(s1): 137-143.
[8] 程洋, 唐建生, 苏春田, 杨杨, 罗飞. 高分一号数据在岩溶水文地质调查中的应用[J]. 国土资源遥感, 2017, 29(s1): 58-66.
[9] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[10] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
[11] 侯爱华, 高伟, 王中挺, 汪霖. 利用高分一号卫星监测开封地区PM2.5[J]. 国土资源遥感, 2017, 29(4): 161-165.
[12] 江威, 何国金, 刘慧婵, 龙腾飞, 王威, 郑守住, 马肖肖. 高分一号卫星WFV影像全国陆地镶嵌与制图技术研究[J]. 国土资源遥感, 2017, 29(4): 190-196.
[13] 李金香, 李志强, 李帅, 王伟, 陈勇. 高分辨率遥感影像居民地半自动提取方法研究[J]. 国土资源遥感, 2017, 29(3): 17-24.
[14] 张幼莹, 余江宽, 张丹丹, 林华暖. 国产卫星影像本底数据更新的实用方案——以地质灾害易发区遥感影像为例[J]. 国土资源遥感, 2017, 29(1): 149-157.
[15] 张焜, 李晓民, 马世斌, 刘世英, 李生辉. GF-1图像在中印边境楚鲁松杰村地质灾害调查中的应用[J]. 国土资源遥感, 2016, 28(2): 139-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发