Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 88-93    DOI: 10.6046/gtzyyg.2020.02.12
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合视觉特征的极化SAR图像分类
黄鹏艳1, 卜丽静2, 范永良3
1.洛阳理工学院土木工程学院,洛阳 471000
2.辽宁工程技术大学测绘与地理科学学院,阜新 123000
3.兰州大学土木工程与力学学院,兰州 730000
Integrating visual features in polarimetric SAR image classification
Pengyan HUANG1, Lijing BU2, Yongliang FAN3
1. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China
2. School of Mapping and Geographical Science, Liaoning Technical University, Fuxin 123000,China
3. College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
全文: PDF(5301 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为充分提取极化合成孔径雷达(synthetic aperture Radar,SAR)图像中的信息,提高图像分类精度,提出结合视觉特征的极化SAR图像分类方法。首先,通过极化目标分解方法提取极化参数组成极化特征向量; 然后,通过灰度共生矩阵和假彩色合成图像提取极化SAR图像中的纹理和颜色特征参数构成视觉特征向量; 最后,将视觉特征向量与极化特征向量组合成新的特征向量,并利用支持向量机(support vector machine,SVM)方法进行分类。对RADARSAT-2的全极化SLC数据进行分类实验,结果表明,与仅使用极化特征向量相比,视觉特征的加入能有效提高极化SAR图像的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄鹏艳
卜丽静
范永良
关键词 目标分解视觉特征极化SAR分类特征向量    
Abstract

In order to improve the polarimetric synthetic aperture Radar (SAR) images classification accuracy by fully extracting variety of useful information, this paper proposes integrating visual features in SAR images classification. Firstly the authors constructed the polarimetric decomposition feature vector, then extracted texture parameters with Grayscale symbiosis matrix, and finally extracted color feature parameters by pseudo-color image. Based on constructing visual vector with texture and color parameter, the authors integrated the visual vector with the polarimetric feature vector to combine the new feature vectors. Using different feature vectors for classification of full PolSAR image, the authors made a comparative study of the classification results. The results show that the combination of visual features can effectively improve the classification accuracy of fully polarimetric SAR image.

Key wordstarget decomposition    visual features    polarimetric SAR image classification    feature vector
收稿日期: 2019-06-06      出版日期: 2020-06-18
:  TP79  
基金资助:国家自然科学基金青年科学基金项目“增量式非参局部自适应MAP模型的凝视卫星视频运动场景超分辨率重建”(41801294);洛阳理工学院青年基金研究项目“极化SAR图像的分类方法研究”(2016QZ06)
作者简介: 黄鹏艳(1988-),女,硕士,助教,主要从事雷达图像解译方面的研究。Email: 757083692@qq.com。
引用本文:   
黄鹏艳, 卜丽静, 范永良. 结合视觉特征的极化SAR图像分类[J]. 国土资源遥感, 2020, 32(2): 88-93.
Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.12      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/88
地物类型 极化特征 视觉特征
纹理特征 颜色特征
水域 粗糙度小,表面散射,较暗区域 灰度变化和边缘信息明显,纹理简单、均匀,一致性突出 黑色
道路 镜面散射,较暗区域 细长型纹理结构,边缘信息明显 灰黑色
建筑物 强散射体,偶次散射,较亮区域 灰度变化和边缘信息明显,纹理较为简单 亮粉白色
植被 树叶、树枝和树干多路径反射,散射机理复杂,体散射 边缘信息不明显,面积大,纹理复杂 绿色
裸地 近似于硬质表面单次散射 边缘信息不明显,纹理复杂 紫色
Tab.1  实验区域地物类别特征分析
Fig.1  本文算法流程
Fig.2  实验数据
Fig.3  极化参数
Fig.4  纹理参数
Fig.5  颜色参数
Fig.6  分类结果图
Fig.7  分类精度对比
[1] Thompson B J, Lee J S, Pottier E. Polarimetric radar imaging:From basics to applications[M]. Boca Raton: CRC Press, 2009: 13-22.
[2] 吴一戎, 洪文, 王彦平. 极化干涉SAR的研究现状与启示[J]. 电子与信息学报, 2007,29(5):1258-1262.
Wu Y R, Hong W, Wang Y P. The current status and implications of polarimetric SAR interferometry[J]. Journal of Electronics and Information Technology, 2007,29(5):1258-1262.
[3] Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification [C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Miami:IEEE, 2009,2(5):1794-1801.
[4] Ersahin K, Cumming I G, Ward R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning [C]// 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona:IEEE, 2007.
[5] 韩景红, 王海江. 基于MV与Wishart距离的极化SAR图像分类[J]. 成都信息工程大学学报, 2019,34(1):31-34.
Han J H, Wang H J. PolSAR image classification based on MV and Wishart distance[J]. Journal of Chengdu University of Information Technology, 2019,34(1):31-34.
[6] 张佳琪, 张继贤, 赵争. 深度神经网络的高分三号全极化SAR图像分类方法[J]. 测绘科学, 2019,44(2):6-11.
Zhang J Q, Zhang J X, Zhao Z. Classification method of GF-3 polarimetric SAR image using deepneural network[J]. Science of Surveying and Mapping, 2019,44(2):6-11.
[7] 杨玉锋. 基于目标分解的全极化SAR图像分类方法研究[D]. 南京:南京林业大学, 2016.
Yang Y F. Classification method of polarimetric SAR image based on target decomposition[D]. Nanjing:Nanjing Forestry University, 2016.
[8] 韩飞. 基于目标分解的极化合成孔径雷达图像分类研究[D]. 成都:电子科技大学, 2016.
Han F. Classification method of polarimetric SAR image based on target decomposition[D]. Chengdu:University of Electronic Science and Technology of China, 2016.
[9] Du L J, Lee J S. Polarimetric SAR image classification based on target decomposition theorem and complex Wishart distribution[J]. 1996 International Geoscience and Remote Sensing Symposium.IEEE, 1996,1(5):439-441.
[10] 赵泉华, 郭世波, 李晓丽, 等. 利用目标分解特征的全极化SAR海冰分类[J]. 测绘学报, 2018,47(12):1609-1620.
Zhao Q H, Guo S B, Li X L, et al. Polarimetric SAR sea ice classification based on target decompositional features[J]. Acta Geodaetica et Cartographica sinica, 2018,47(12):1609-1620.
[11] 于昕梅, 朱林. 图像视觉特征综述[J].广东通信技术, 2004(s1):108-109,121.
Yu X M, Zhu L. Overview of image visual features[J].Guangdong Communication Technology, 2004(s1):108-109,121.
[12] Zhang L M, Zou B, Zhang J P, et al. Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features [C]// 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.IEEE, 2009.
[13] Dell’ Acqua F, Gamba P. Texture-based characterization of urban environments on satellite SAR images[J]. IEEE Transactions on Geoscience and Remote sensing, 2003,41(1):153-159.
[14] Kandaswamy U, Adjeroh D A, Lee M. Efficient texture analysis of SAR imagery[J]. IEEE Transaction on Geoscience and Remote sensing, 2005,43(9):2075-2083.
[15] Uhlmann S, Kiranyaz S. Integrating color features in polarimetric SAR image classification[J]. IEEE Transaction on Geoscience and Remote sensing, 2014,52(4):2197-2216.
doi: 10.1109/TGRS.36
[16] 卜丽静, 黄鹏艳, 沈璐. 一种结合颜色特征的PolSAR图像分类方法[J]. 国土资源遥感, 2017,29(3):59-64.doi: 10.6046/gtzyyg.2017.03.08.
Bu L J, Huang P Y, Shen L. Integrating color features in polarimetric SAR image classification[J]. Remote Sensing for Land and Resources, 2017,29(3):59-64.doi: 10.6046/gtzyyg.2017.03.08.
[17] Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3):1-27.
[18] Ersahin K, Scheuchl B, Cumming I. Incorporating texture information into polarimetric radar classification using neural networks [C]// Proceedings of 2004 IEEE International.Geoscience and Remote Sensing Symposium.New York:IEEE, 2004: 560-563.
[19] 胡召玲, 李海权, 杜培军. SAR图像纹理特征提取与分类研究[J]. 中国矿业大学学报, 2009,38(3):422-427.
Hu Z L, Li H Q, Du P J. Study on the extraction of texture features andiIts application in classifying SAR images[J]. Journal of China University o f Mining and Technology, 2009,38(3):422-427.
[20] 李林科. 基于深度学习的视觉内容描述技术研究[D]. 成都:电子科技大学, 2018.
Li L K. Research on visual content description technology based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2018.
[21] Huynen J R. Phenomenological theory of Radar targets[D]. Delft:Delft Technical University, 1970.
[22] Freeman A, Durden S. A three-component scattering model for polarimetric SAR data[J]. IEEE Transaction on Geoscience and Remote Sensing, 1998,36(3):963-973.
[23] 肖鹏峰, 刘顺喜, 冯学智, 等. 中分辨率遥感图像土地利用与覆被分类的方法及精度评价[J]. 国土资源遥感, 2004,16(4):41-45,79.doi: 10.6046/gtzyyg.2004.04.11.
Xiao P F, Liu S X, Feng X Z, et al. Methods and accuracy assessment for land use and cover classificationbased on medium resolution remotely sensed data[J]. Remote Sensing for Land and Resources, 2004,16(4):41-45,79.doi: 10.6046/gtzyyg.2004.04.11.
[24] 叶润青, 牛瑞卿, 张良培, 等. 基于图像分类的矿物含量测定及精度评价[J]. 中国矿业大学学报, 2011,40(5):810-815,822.
Ye R Q, Niu R Q, Zhang L P, et al. Mineral contents determination and accuracy evaluation based on classification of petrographic images[J]. Journal of China University of Mining and Technology, 2011,40(5):810-815,822.
[1] 徐佳, 袁春琦, 程圆娥, 曾晨雨, 许康. 基于主动深度学习的极化SAR图像分类[J]. 国土资源遥感, 2018, 30(1): 72-77.
[2] 卜丽静, 黄鹏艳, 沈璐. 一种结合颜色特征的PolSAR图像分类方法[J]. 国土资源遥感, 2017, 29(3): 59-64.
[3] 李霖, 罗恒, 唐新明, 李桢. 资源三号卫星多光谱图像特征分析和质量评价[J]. 国土资源遥感, 2014, 26(1): 17-24.
[4] 李成, 陈仁喜, 王秋燕. 改进的基于视觉认知特征的植被识别方法[J]. 国土资源遥感, 2013, 25(2): 75-80.
[5] 陈劲松, 邵芸, 林晖. 全极化SAR数据在地表覆盖/利用监测中的应用[J]. 国土资源遥感, 2004, 16(2): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发