Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 172-181    DOI: 10.6046/gtzyyg.2020203
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用
凌晓1(), 刘甲美2,3(), 王涛2,3, 朱月琴4, 袁玲玲4, 陈扬洋1
1.中国地质大学(北京)信息工程学院,北京 100083
2.中国地质科学院地质力学研究所,北京 100081
3.新构造运动与地质灾害重点实验室,北京 100081
4.中国地质调查局发展研究中心,北京 100037
Application of information value model based on symmetrical factors classification method in landslide hazard assessment
LING Xiao1(), LIU Jiamei2,3(), WANG Tao2,3, ZHU Yueqin4, YUAN Lingling4, CHEN Yangyang1
1. School of Information Engineering and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081, China
3. Key Laboratory of Neotectonics Movement and Geohazard, Beijing, 100081, China
4. Development and Research Center, China Geological Survey, Beijing, 100037, China
全文: PDF(8676 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

信息量模型是由信息论引出的一种统计预测方法,被广泛地应用于地质灾害危险性评价中。如何制定合适的因子分级方法,使单因子统计分析的优势最大化,是信息量模型构建中的关键问题。为此提出了一种对称分级方法,该方法基于正态分布相关的统计学知识,以标准差为间隔对因子进行预分级后,由外到内将对称的区间合并、划分为一级。基于对称分级方法,对坡度、地表曲率、地形湿度等指标与滑坡面积呈近似正态分布的因子进行了分级,并构建了信息量模型,对汶川地区进行地震滑坡危险性评价。为验证对称法的合理性,选取5种标准分级方法(等间距分割、分位数分割、自然间断分割、几何间断分割和标准差分割)进行对比实验。结果表明,利用对称法分级得到的结果中,较高、极高危险区内的实际滑坡面积比例达80.87%,高于利用其他标准分级方法得到的结果,证明对称法具有较好的分级效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
凌晓
刘甲美
王涛
朱月琴
袁玲玲
陈扬洋
关键词 信息量模型地震滑坡滑坡危险性评价因子分级方法对称法分级    
Abstract

The information value model (IVM) is a statistical prediction method derived from information theory, which is widely used in natural hazard risk assessment. The problem as to how to formulate a suitable factor classification method to maximize the advantages of pre- single factor statistical analysis remains a key issue. In order to solve this problem, the authors processed a method of factor classification by combining symmetrical intervals. Statistical knowledge related to normal distribution was referred, the factors was pre-segmented by 1/2 standard deviation, and the intervals were merged symmetrically from outside to inside. After that, factors approximately fitting normal distribution, such as slope angel and topographic wetness index (TWI), were classified based on this method, and IVM was built, which was later used in landslide hazard susceptibility analysis in Wenchuan area. Meanwhile, 5 standard classification methods were selected and tested as comparative experiments for rationality verification, namely equal quantile (EQ) classification method, natural break (NB) classification method, geometric break (GB) classification method and standard deviation (SD) classification method. The results show that the IVM using symmetrical method as factor classification method stands out among the rests. The actual landslide area ratio in the high and extremely high-risk areas in the susceptibility map reached 80.87%, higher than that obtained by other standard classification methods. This proves that the symmetrical classification method performs well.

Key wordsinformation value model (IVM)    landslide triggered by earthquake    landslide susceptibility analysis    factor classification methods    symmetrical classification method
收稿日期: 2020-07-06      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“地震及地震滑坡危险性分析方法研究及算法研发”(2018YFC1504601);“基于‘地质云’平台的深部找矿知识挖掘”(2016YFC0600510);“基于地质云的地质灾害基础信息提取与大数据分析挖掘”(2018YFC1505501);国家自然科学基金项目“考虑震源机制的设定地震滑坡危险性评价研究”(41702343);中国地质调查局地质调查项目“渭河中上游城镇灾害地质调查”(DD20190717)
通讯作者: 刘甲美
作者简介: 凌 晓(1996-),女,硕士研究生,主要研究方向为地质灾害信息提取、地质灾害定量化评价。Email: LinGX0527@163.com
引用本文:   
凌晓, 刘甲美, 王涛, 朱月琴, 袁玲玲, 陈扬洋. 基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用[J]. 国土资源遥感, 2021, 33(2): 172-181.
LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020203      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/172
Fig.1  基于信息量模型的汶川地震滑坡危险性评价技术流程
Fig.2  对称法分级示意图(以标准正态分布为例)
Fig.3  研究区内基础地理数据
编号 分类 致灾因子 数据源 致灾指示意义
1 地形地貌因子 坡度 DEM(25 m) 坡面“坡角”几何形态,控制坡体稳定性及滑移距离
2 坡向 DEM(25 m) 阳坡阴坡发生滑坡的可能性不同,地震滑坡现出明显的断层逆冲方向效应和背坡效应
3 高程 DEM(25 m) 海拔的高低影响降水量、温度、植被覆盖度,间接影响斜坡稳定程度
4 到断层距离 断层矢量(1∶100万) 地质体的结构面发育程度,控制坡体稳定性
5 地表曲率 DEM(25 m) 地表曲率是关于地形表面扭曲变化程度的定量化描述,可反映地貌的更深层次信息
编号 分类 致灾因子 数据源 致灾指示意义
6 岩性因子 岩性 数字地质图(1∶20万公开版) 斜坡岩土体的物理和强度特征,控制坡体稳定性
7 水文因子 到河流距离 河网矢量(1∶25万) 坡脚侵蚀及坡体水文地质特征,控制坡体稳定性
8 地形湿度指数 DEM(25 m) 可作为地表水环境的定量化描述
9 地震因子 地震烈度 地震烈度矢量 地震动荷载条件
Tab.1  致灾因子的详细数据源与选取原则
Fig.4  坡度与滑坡之间的关系
Fig.5  坡向与滑坡之间的关系
Fig.6  高程和岩性与滑坡之间的关系
Fig.7  到断层距离与滑坡之间的关系
Fig.8  -0.05~0.05范围内地表曲率与滑坡面积之间的关系
岩性分组 代表岩性种类
1 晋宁期、印支期、华力西期闪长岩、花岗岩
中元古代黄水河群岩浆岩及变质岩系、安山岩、片岩、玄武岩等
侏罗系灰褐色-浅灰绿色含砾砂岩、砂砾岩
2 前震旦系石英岩、片岩夹大理岩,灰绿色酸性火山角砾凝灰岩
前震旦系角斑岩、细碧岩、凝灰岩,印支期、二长岩、正长岩
二叠系灰岩,三叠系、泥盆系白云岩等
3 震旦系、寒武系、泥盆系、侏罗系砂岩、粉砂岩、硅质岩夹板岩、粉砂岩长石石英砂岩夹黏土岩等
三叠系、白垩系含砾砂岩、页岩、紫红色泥岩、变质长石石英砂岩夹千枚岩
侏罗系砾岩、砂岩夹泥岩、砾岩夹岩屑砂岩、粉砂质、黏质砂土等
4 志留系、泥盆系、三叠系千枚岩、板岩、细砂岩、粉砂岩夹灰岩
三叠系、侏罗系砂质泥岩夹煤层、石英砂岩夹黏土层、炭质页岩、长石及岩屑砂岩等
泥盆系粉质泥岩、泥岩
5 第四系亚黏土、亚砂土
第四系冲洪积砂砾石、黏土等
Tab.2  岩性分组及其对应的部分代表岩性
Fig.9  岩性和岩性与滑坡之间的关系
Fig.10  到河流距离与滑坡之间的关系
Fig.11  地形湿度指数与滑坡面积之间的关系
Fig.12  地震烈度与滑坡面积之间的关系
Fig.13-1  对于地形湿度指数的六种分级方法
Fig.13-2  对于地形湿度指数的六种分级方法
Fig.14-1  六种分级方法得到的汶川地区滑坡危险性分析图
Fig.14-2  六种分级方法得到的汶川地区滑坡危险性分析图
等级 EI法 EQ法 NB法 GB法 SD法 对称法
极低 0.01 0.01 0.03 0.04 0.05 0.04
较低 1.07 1.88 2.58 4.14 4.46 2.07
中等 19.68 18.49 22.60 27.17 26.67 17.03
较高 60.20 51.01 59.46 63.67 63.40 39.03
极高 19.04 28.60 15.33 4.98 5.41 41.84
Tab.3  危险性较高和极高区域内实际发生滑坡面积的大小和比例对比
[1] 张铎, 吴中海, 李家存, 等. 国内外地震滑坡研究综述[J]. 地质力学学报, 2013, 19(3):225-241.
Zhang D, Wu Z H, Li J C, et al. An overview on earthquake-included landslide research[J]. Journal of Geomechanics, 2013, 19(3):225-241.
[2] 刘凤民, 张立海, 刘海青, 等. 中国地震次生地质灾害危险性评价[J]. 地质力学学报, 2006, 12(2):127-131.
Liu F M, Zhang L H, Liu H Q, et al. Danger assessment of earthquake-included geological disasters in China[J]. Journal of Geomechanics, 2006, 12(2):127-131.
[3] Pourghasemi H R, Pradhan B, Gokceoglu C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz Watershed,Iran[J]. Natural Hazards, 2012, 63(2):965-996.
doi: 10.1007/s11069-012-0217-2
[4] 刘丽娜, 许冲, 徐锡伟, 等. GIS支持下基于AHP方法的2013年芦山地震区滑坡危险性评价[J]. 灾害学, 2014(4):183-191.
Liu L N, Xu C, Xu X W, et al.GIS-based landslide hazard evaluation using AHP method in the 2013 Lushan earthquake region[J]. Journal of Catastrophology, 2014(4):183-191.
[5] 贺鹏, 童立强, 郭兆成, 等. GIS支持下基于层次分析法的西藏札达地区滑坡灾害危险性评价研究[J]. 科学技术与工程, 2016, 16(25):193-200.
He P, Tong L Q, Guo Z C, et al. Evaluation research on the landslide disaster liability in Zhada region of tibet[J]. Science Technology and Engineering, 2016, 16(25):193~200.
[6] 庄建琦, 崔鹏, 葛永刚, 等. 5·12汶川地震崩塌滑坡分布特征及影响因子评价——以都江堰至汶川公路沿线为例[J]. 地质科技情报, 2009, 28(2):16-22.
Zhuang J Q, Cui P, Ge Y G, et al. Distribution characteristics and impact factors assessment of collapses and landslides caused by 5.12 Wenchuan earthquake:Taking Dujiangyan-Wenchuan Highway as a sample[J]. Bulletin of Geological Science and Technology, 2009, 28(2):16-22.
[7] He Y, Beighley R E. GIS-based regional landslide susceptibility mapping:A case study in southern California[J]. Earth Surface Processes & Landforms, 2010, 33(3):380-393.
[8] Roberta P, Paolo F, Giuseppe S, et al. Landslide susceptibility assessment in Apulian southern Apennine:Heuristic vs.statistical method[J]. Environmental Earth Sciences, 2014, 72(4):1097-1108.
doi: 10.1007/s12665-013-3026-3
[9] Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar,Turkey:Conditional probability,logistic regression,artificial neural networks and support vector machine[J]. Environmental Earth Sciences, 2010, 61(4):821-836.
doi: 10.1007/s12665-009-0394-9
[10] Youssef A M, Pourghasemi H R, Pourtaghi Z S, et al. Landslide susceptibility mapping using random forest,boosted regression tree,classification and regression tree and general linear models and comparison of their performance at Wadi Tayyah Basin,Asir region,Saudi Arabia[J]. Landslides, 2016, 13(5):839-856.
doi: 10.1007/s10346-015-0614-1
[11] Wei C, Xie X S, Peng J B, et al. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method[J]. Catena, 2018, 164(5):135-149.
doi: 10.1016/j.catena.2018.01.012
[12] 丛威青, 潘懋, 李铁锋, 等. 基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J]. 地学前缘, 2006, 13(1):185-190.
Cong W Q, Pan M, Li T F, et al. Key research on landslide and debris flow hazard zonation based on GIS[J]. Earth Science Frontiers, 2006, 13(1):185-190.
[13] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(8):623-656.
doi: 10.1002/bltj.1948.27.issue-4
[14] Van W C. Statistical landslide hazard analysis[C]// Application Guide.ILWIS 21 for Windows.Enschede:ITC, 1997:73-84.
[15] 杜军, 杨青华, 严嘉, 等. 基于GIS与信息量模型的汶川次生地质灾害危险性评价[J]. 地球科学-中国地质大学学报, 2010, 35(2):168-174.
Du J, Yang Q H, Yan J, et al. Hazard evaluation of secondary geological disaster based on GIS and information value method[J]. Editorial Committee of Earth Science,Journal of China University of Geosciences, 2010, 35(2):168-174.
[16] 罗真富. 泥石流流域滑坡地质灾害遥感信息提取及危险性评价——以安县段和松潘段研究区为例[D]. 成都:成都理工大学, 2011.
Luo Z F. Landslide hazard evaluation in debris flow catchment area based on GIS and information method[D]. Chengdu:Chengdu Univerisity of Technology, 2011.
[17] Afungang R N, Valdir D M B C, Nkwemoh C A, Assessing the spatial probability of landslides using GIS and informative value model in the Bamenda highlands[J]. Arabian Journal of Geosciences, 2017, 10(17):384-399.
doi: 10.1007/s12517-017-3155-1
[18] Laxmi D V, Rajeshwar B, Desh D P. Comparative evaluation of GIS based landslide hazard zonation maps using different approaches[J]. Journal of the Geological Society of India, 2019, 93(6):684-692.
doi: 10.1007/s12594-019-1247-0
[19] Chen Y, Wang Q, Wei Y, et al. Application of information index model in landslide susceptibility mapping on Tonggu Jiangxi province,China[C]// IGARSS IEEE International Geoscience & Remote Sensing Symposium,IEEE, 2014.
[20] 殷坤龙. 滑坡灾害预测预报[M]. 北京: 中国地质大学出版社, 2004.
Yin K L. Forecast of landslide hazard[M]. Beijing: China University of Geosciences Press, 2004.
[21] 许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1):27-46.
Xu C, Xu X W, Wu X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1):27-46.
[22] 兰恒星, 伍法权, 周成虎, 等. 基于GIS的滑坡空间数据库研究——以云南小江流域为例[J]. 中国地质灾害与防治学报, 2002, 13(4):10-16.
Lan H X, Wu F Q, Zhou C H, et al. GIS based spatial database for landslide assessment——A case study in Yunnan Xiaojiang river valley[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(4):10-16.
[23] 孟祥瑞, 裴向军, 刘清华, 等. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2016, 27(3):112-121.
Meng X R, Pei X J, Liu Q H, et al. GIS-based susceptibility assessment of geological hazards along the road from Dujiangyan to Wenchuan by factor analysis[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3):112-121.
[24] 许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[C]// 中国科学院地质与地球物理研究所第十届(2010年度)学术年会论文集(中), 2011.
Xu C, Dai F C, Yao X, et al. Earthquake triggered landslide susceptibility evaluation based on GIS platform and weight-of-evidence modeling[C]// Proceedings of the 10th (2010) Annual Conference of the Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011.
[25] 孙德亮. 基于机器学习的滑坡危险性区划与降雨诱发滑坡预报预警研究[D]. 上海:华东师范大学, 2019.
Sun D L. Mapping landslide susceptibility based on machine learning and forecast warning of landslide induced by rainfall[D]. Shanghai:East China Normal University, 2019.
[26] 赵卫东, 龚俊豪, 赵纪堂, 等. 顾及平原区微地貌的地形湿度指数及其地表水环境意义[J]. 合肥工业大学学报(自然科学版), 2019, 42(1):119-124.
Zhao W D, Gong J H, Zhao J T, et al. Research on topographic wetness index and its implications of surface water environment considering micro-reliefs on plains[J]. Journal of Hefei University of Technology(Natural Science), 2019, 42(1):119-124.
[27] 陶舒, 胡德勇, 赵文吉, 等. 基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价——以汶川县北部为例[J]. 地理研究, 2010, 29(9):60-71.
Tao S, Hu D Y, Zhao W J, et al. Susceptibility assessment of secondary landslides triggered by earthquakes:A case study of northern Wenchuan[J]. Geographical Research, 2010, 29(9):60-71.
[1] 李晨辉, 郝利娜, 许强, 王一, 严丽华. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1): 74-80.
[2] 段俊斌, 彭鹏, 杨智, 刘乐. 基于ASTER数据的多金属成矿有利区预测[J]. 国土资源遥感, 2019, 31(3): 193-200.
[3] 王治华. 滑坡遥感调查、监测与评估[J]. 国土资源遥感, 2007, 19(1): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发