Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 105-110    DOI: 10.6046/zrzyyg.2020353
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于GF-3全极化SAR数据的滨海湿地信息提取方法
何陈临秋1,2(), 程博1(), 陈金奋1,2, 张晓平1,2
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 100049
Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data
HE Chenlinqiu1,2(), CHENG Bo1(), CHEN Jinfen1,2, ZHANG Xiaoping1,2
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2837 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

滨海湿地信息提取对于准确掌握滨海湿地分布现状、保护与管理滨海湿地珍稀资源具有重要意义。通过可分性指数筛选极化分解特征并利用随机森林法对全极化SAR影像进行分类,以提高滨海湿地保护区地物信息提取精度。选取辽宁省辽河口湿地自然保护区作为研究区域,基于国产高分三号全极化雷达影像,采用5种极化目标分解方法提取极化特征,利用可分性指数优化特征选择,最后利用随机森林法进行辽河口自然保护区地物分类及精度评价。实验结果表明,基于优化选择的极化特征地物分类精度可达75.47%; 优化选择后的极化特征参数能够有效避免信息冗余,提高滨海湿地保护区地物信息提取精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何陈临秋
程博
陈金奋
张晓平
关键词 滨海湿地高分三号极化特征选择    
Abstract

The study on the information extraction methods of coastal wetlands is highly significant for accurately grasping the distribution status of coastal wetlands and for protecting and managing the rare resources in coastal wetlands. To improve the information extraction precision of surface features in coastal wetland conservation areas, this paper screens the polarimetric decomposition features using the separability index and classifies fully polarimetric SAR images using the random forest method. The details are as follows. Based on the domestic GF-3 fully polarimetric radar images of the Liaohe River Estuary National Nature Reserve in Liaoning Province, five polarimetric target decomposition methods were used to extract polarimetric features, the separable index was adopted to optimize feature selection, and finally the random forest method was utilized to conduct the classification and accuracy assessment of surface features in the study area. The experiment results show that the classification accuracy of surface features in wetlands based on optimized polarimetric features was up to 75.47%. Meanwhile, the optimized polarimetric feature parameters can effectively avoid information redundancy and improve the information extraction accuracy of surface features in coastal wetland conservation areas.

Key wordscoastal wetland    GF-3    selection of polarimetric features
收稿日期: 2020-11-09      出版日期: 2021-12-23
ZTFLH:  TP751  
基金资助:国家自然科学基金重点项目“基于认知计算的遥感卫星下行数据即时服务的理论与方法研究”(61731022)
通讯作者: 程博
作者简介: 何陈临秋(1993-),女,硕士研究生,主要从事雷达遥感湿地信息提取方法研究。Email: heclq@radi.ac.cn
引用本文:   
何陈临秋, 程博, 陈金奋, 张晓平. 基于GF-3全极化SAR数据的滨海湿地信息提取方法[J]. 自然资源遥感, 2021, 33(4): 105-110.
HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data. Remote Sensing for Natural Resources, 2021, 33(4): 105-110.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020353      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/105
Fig.1  预处理后GF-3全极化SAR影像(HH极化)
Fig.2  研究方法流程图
一级分类 二级分类 主要特征
天然湿地 芦苇沼泽 以芦苇为主要覆盖植被的沼泽化草甸
翅碱蓬滩涂 以翅碱蓬为主要覆盖植被的沿海滩涂
淤泥质海滩 滨海光滩和河漫滩
自然水域 天然的浅海水域和河流
人工湿地 水稻田 以水稻种植为主的蓄水农田
养殖池塘 鱼虾蟹贝养殖区
非湿地 建筑用地 居民地和工业用地
Tab.1  研究区遥感分类体系
Fig.3  极化分解特征假彩色影像
目标分解方法 极化参数
Krogager 球分量 K s 螺旋体分量 K h 二面角分量 K d
Pauli[12] 奇次散射 P a 偶次散射 P b 二面角散射 P c
Huynen[11] 目标对称因子 A 0 目标非对称性因子 B 0-B 目标非规则性因子 B 0+B
Cloude[13,14,15,16] 散射熵H 平均散射角 α - 反熵A
Freeman[17,18,19] 单次散射Odd 二次散射Dbl 体散射Vol
Tab.2  极化分解特征
Fig.4  研究区各类地物可分性指数柱状图
Fig.5  分类结果
类别 芦苇沼泽 翅碱蓬滩涂 淤泥质海滩 自然水域 水稻田 养殖池塘 建筑用地 合计 用户精度/%
芦苇沼泽 20 178 952 843 344 1 285 355 257 24 214 83.33
翅碱蓬滩涂 1 057 9 105 1 087 102 606 83 107 12 147 74.96
淤泥质海滩 583 992 10 423 690 522 627 15 13 852 75.25
自然水域 160 601 861 15 948 87 1 984 63 19 704 80.94
水稻田 2 359 989 1 405 397 10 685 81 632 16 548 64.57
养殖池塘 703 382 540 1 452 118 5 749 259 9 203 62.47
建筑用地 344 30 13 8 246 136 2 833 3 610 78.47
合计 25 384 13 051 15 172 18 941 13 549 9 015 3 066 99 278
生产精度/% 79.49 69.76 68.70 84.20 78.86 63.77 92.40
总体精度=75.47% Kappa=0.70
Tab.3  分类结果混淆矩阵
[1] 刘润红, 梁士楚, 赵红艳, 等. 中国滨海湿地遥感研究进展[J]. 遥感技术与应用, 2017,32(6):998-1011.
Liu R H, Liang S C, Zhao H Y, et al. Progress of Chinese coastal wetland based on remote sensing[J]. Remote Sensing Technology and Application, 2017,32(6):998-1011.
[2] Schmitt A, Brisco B, Kaya S, et al. Polarimetric change detection for wetlands[C]//Neale C,Cosh M.Remote Sensing and Hydrology.Oxford:IAHS Publication, 2012:375-379.
[3] Touzi R, Deschamps A, Rother G. Wetland characterization using polarimetric Radarsat-2 capability[J]. Canadian Journal of Remote Sensing, 2007,33(s1):56-67.
[4] Touzi R, Deschamps A, Rother G. Phase of target scattering for wetland characterization using polarimetric C-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(9):3241-3261.
doi: 10.1109/TGRS.2009.2018626
[5] 陈媛媛, 何秀凤, 王静. 基于SVM的极化SAR沿海滩涂分类[J]. 地理空间信息, 2015,13(6):150-153,16.
Chen Y Y, He X F, Wang J. Polarimetric SAR classification of coastal wetland based on SVM[J]. Geospatial Information, 2015,13(6):150-153,16.
[6] 亓宁轩, 罗征宇, 李彬. 基于多波段全极化SAR影像的湿地分类[J]. 测绘与空间地理信息, 2017,40(1):171-174.
Qi N X, Luo Z Y, Li B. Multi-band polarization SAR wetlands classification[J]. Geomatics and Spatial Information Technology, 2017,40(1):171-174.
[7] 徐梦竹, 徐佳, 邓鸿儒, 等. 基于全极化SAR影像的海岛地物分类[J]. 遥感技术与应用, 2019,34(3):647-654.
Xu M Z, Xu J, Deng H R, et al. Land-use classification of islands based on fully polarimetric SAR data[J]. Remote Sensing Technology and Application, 2019,34(3):647-654.
[8] 王超, 张红, 陈曦, 等. 全极化合成孔径雷达图像处理[M]. 北京: 科学出版社, 2008:44-106.
Wang C, Zhang H, Chen X, et al. Processing of fully polarimetric synthetic aperture Radar imagery[M]. Beijing: Science Press, 2008:44-106.
[9] 国家林业局《湿地公约》履约办公室. 湿地公约履约指南[M]. 北京: 中国林业出版社, 2001.
Performance Office of China Convention on Wetlands. Guide on implementing ramsar convention in China[M]. Beijing: China Forestry Publishing House, 2001.
[10] 牟晓杰, 刘兴土, 阎百兴, 等. 中国滨海湿地分类系统[J]. 湿地科学, 2015,13(1):19-26.
Mou X J, Liu X T, Yan B X, et al. Classification system of coastal wetlands in China[J]. Wetland Science, 2015,13(1):19-26.
[11] Huynen J R. Phenomenological theory of Radar targets[J]. Electromagnetic Scattering, 1978:653-712.
[12] 宋瑞超, 赵国忱, 卜丽静. 基于多极化特征和纹理特征的PolSAR图像分类[J]. 城市勘测, 2019(3):121-126,130.
Song R C, Zhao G C, Bu L J. PolSAR images classification based on multi-polarization feature and texture feature[J]. Urban Geotechnical Investigation and Surveying, 2019(3):121-126,130.
[13] Cloude S R. Target decomposition theorems in Radar scattering[J]. Electronics Letters, 1985,21(1):22-24.
doi: 10.1049/el:19850018
[14] Cloude S R, Pottier E. A review of target decomposition theorems in Radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(2):498-518.
doi: 10.1109/36.485127
[15] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(1):68-78.
doi: 10.1109/36.551935
[16] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(5):1551-1565.
doi: 10.1109/36.718859
[17] Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3):963-973.
doi: 10.1109/36.673687
[18] 赵泉华, 胡广臣, 李晓丽, 等. 基于全极化SAR影像的双台河口湿地分类及其变化分析[J]. 环境科学研究, 2019,32(2):309-316.
Zhao Q H, Hu G C, Li X L, et al. Full-polSAR image based on wetland classification and change analysis of the Shuangtai estuary wetland[J]. Research of Environmental Sciences, 2019,32(2):309-316.
[19] 万剑华, 张乃心, 任广波, 等. 典型滨海湿地植被全极化SAR显著性特征分析与融合分类[J]. 测绘地理信息, 2018,43(5):4-8.
Wan J H, Zhang N X, Ren G B, et al. Analysis and classification of fully-polarization SAR characteristics of typical vegetation in coastal wetland[J]. Journal of Geomatics, 2018,43(5):4-8.
[20] 李平, 徐新, 董浩, 等. 利用可分性指数的极化SAR图像特征选择与多层SVM分类[J]. 计算机应用, 2018,38(1):132-136,170.
Li P, Xu X, Dong H, et al. Polarimetric SAR image feature selection and multi-layer SVM classification using divisibility index[J]. Journal of Computer Applications, 2018,38(1):132-136,170.
[21] 田旸. 基于Radarsat-2时间序列的湿地水文情势遥感监测与湿地分类[D]. 哈尔滨:哈尔滨师范大学, 2017.
Tian Y. Monitoring hydrological regime and classifying the wetland based on time series Radarsat-2 images[D]. Harbin:Harbin Normal University, 2017.
[22] 潘庆榜. 兼容光学、雷达与地形辅助数据的森林湿地遥感分类[D]. 哈尔滨:哈尔滨师范大学, 2017.
Pan Q B. Remote sensing classification in forest wetland compatible with the optical,Radar and terrain aided data[D]. Harbin:Harbin Normal University, 2017.
[23] 黄瑾. 基于多波段多极化SAR数据的黄河口湿地分类研究[D]. 青岛:中国石油大学, 2011.
Huang J. Classification of the Yellow River estuary wetland based on multiband and multi-polarization SAR data[D]. Qingdao:China University of Petroleum, 2011.
[1] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
[2] 刘春悦, 张树清, 江红星, 王会, 孙妍.  江苏盐城滨海湿地景观格局时空动态研究[J]. 国土资源遥感, 2009, 21(3): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发