Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 189-197    DOI: 10.6046/zrzyyg.2021056
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
国产微景一号小卫星影像的城市裸地识别应用
孙一鸣1(), 张宝钢1(), 吴其重1, 刘奥博1, 高超2, 牛静3, 何平3
1.北京师范大学全球变化与地球系统科学研究院,北京 100875
2.中国人民解放军63921部队, 北京 100094
3.深圳航天东方红卫星有限公司,深圳 518000
Application of domestic low-cost micro-satellite images in urban bare land identification
SUN Yiming1(), ZHANG Baogang1(), WU Qizhong1, LIU Aobo1, GAO Chao2, NIU Jing3, HE Ping3
1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
2. Unit 63921 of People’s Liberation Army, Beijing 100094, China
3. Shenzhen Aerospace Dongfanghong Satellite Ltd., Shenzhen 518000, China
全文: PDF(4376 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

低成本微小卫星及其星座组成是近年来卫星遥感领域发展的重要方向之一,可有效弥补单一卫星过境频次过少和组网成本过高的问题。遥感卫星监测具有覆盖面广、不易受人为干扰的优点,是生态环境领域获取裸地信息的重要手段。该文基于国产微景系列低成本微小卫星的遥感影像数据开展了城市裸地识别的探索性研究,并将其结果与美国陆地系列卫星(Landsat8)影像进行了对比分析,探讨国产微小卫星在生态环境领域裸地识别应用中的可靠性。以山东省日照市东港区城区为研究区域,构建无监督植被指数(ExG-ExR)和最大似然法结合的提取方法,并加以应用。结果表明: ①微景一号02星拍摄的5 m空间分辨率全色影像能清晰反映研究城区现状,影像具有高空间分辨率,对地物细节拍摄更清楚,但相比Landsat8影像缺乏波段优势; ②微景一号02星影像总分类精度为93.3%,Kappa系数可达到0.85,微景系列小卫星在裸地识别具有一定的可靠性; ③微景一号02卫星与Landsat8卫星提取日照东港城区裸地面积相差1.5个百分点,表明在拍摄时间相近和一致地理坐标校正情况下,算法得当,微景系列小卫星在裸地识别方面具有与传统主流卫星相当的城区裸地反演识别能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙一鸣
张宝钢
吴其重
刘奥博
高超
牛静
何平
关键词 微小卫星裸地反演微景一号系列卫星    
Abstract

Low-cost microsatellites and their constellations are important directions in the development of satellite remote sensing in recent years. This is because they can effectively alleviate the questions such as the low transit frequency of a single satellite and the high networking cost of satellites. Monitoring using remote sensing satellites is an important means to obtain bare land information in the ecological field owing to its wide coverage area and immunity to man-made interference. This study carried out exploratory research on urban bare land identification using the remote sensing images of low-cost micro-satellites of MV-1 Constellation. The identification results were compared to those obtained using Landsat8 images to explore the reliability of the implication of domestic low-cost micro-satellite images in urban bare land identification. To this end, this study selected Donggang District, Rizhao City, Shandong Province as an example and developed the extraction method that combines unsupervised vegetation indices-excess green and excess red (ExG-ExR)-with the maximum likelihood method. The results are as follows. ① The panchromatic images with a resolution of 5 m that were shot by Micro-satellite No. 02 of MV-1 Constellation can clearly reflect the current status of Donggang District. They have higher resolution and perform better in capturing details of ground features. However, they lack wave band advantages over Landsat8 images. ② The images of Micro-satellite No. 02 had an overall classification accuracy of 93.3% and a Kappa coefficient of up to 0.85. Therefore, the micro-satellites of MV-1 Constellation are reliable in bare land identification to some extent. ③ The difference between the bare land area in the Donggang urban area identified using Micro-satellite No. 02 images and Landsat8 images was 1.5 percentage points. This indicates that micro-satellites of MV-1 Constellation have equivalent inversion capacity in urban bare land identification to mainstream satellites under the conditions of proper algorithms, close shooting time, and consistent geo-coordinate correction.

Key wordsmicrosatellite    bare land inversion    satellites of MV-1 Constellation
收稿日期: 2021-03-01      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“全球关键区域大气污染协同控制策略”编号(2020YFA0607804);国家重点研发计划项目“全耦合多尺度空气质量预报平台研发和示范应用”编号(2017YFC0209805);中央高校基本科研业务费专项资金资助项目及北京高精尖学科“陆地表层学”共同资助
通讯作者: 张宝钢
作者简介: 孙一鸣(1998-),男,硕士研究生,主要研究方向为环境遥感、空气质量模式与模拟。Email: symkfz@outlook.com
引用本文:   
孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022, 34(1): 189-197.
SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021056      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/189
参数 微景一号01星
(京师一号)
微景一号02星 Landsat8卫星
轨道参数 739 km,SSO轨道,降交点10: 30 492 km,SSO轨道,降交点10: 30 705 km,降交点10: 00
图像分辨率/m 宽幅相机:
73.9
4.9 OLI: 30(B1-B7,B9),15(B8)
中分相机: 8 TIRS: 100
波段/nm 宽幅相机: 470~770 蓝光: 400~500
绿光: 490~580
红光: 580~700
B2: 450~515
B3: 525~600
B4: 630~680
B5: 845~885
中分相机: 420~700
尺寸/m3 <0.5×0.5×0.5 0.5×0.4×0.4
Tab.1  微景一号星座卫星和Landsat8卫星主要参数
Fig.1  研究区域日照市东港区主要城区影像
Fig.2  研究区域日照市东港区主要城区植被指数图像
地物 建筑物 水体 裸地
建筑物 0 1.99 1.99
水体 0 2.00
裸地 0
Tab.2  微景一号02星裁剪后影像不同地物特征分离度
地物 建筑物 水体 裸地
建筑物 0 1.92 1.91
水体 0 1.99
裸地 0
Tab.3  Landsat8裁剪后影像不同地物特征分离度
Fig.3  影像处理流程
Fig.4  日照市东港区青岛路影像
Fig.5  裸地提取结果
Fig.6  微景一号02星影像与Landsat8卫星影像裸地提取对比
分类精度验证 目视解译结果 行像
使用者
精度/%
裸地
像元
非裸地
像元
裸地像元 271 29 300 90.3
非裸地像元 26 474 500 94.1
列像元 297 503 800
生产者精度/% 91.2 94.2
总精度/% 93.3 Kappa=0.85
Tab.4  微景一号02星分类精度评价
分类精度验证 目视解译结果 行像
使用者
精度/%
裸地
像元
非裸地
像元
裸地像元 268 32 300 89.3
非裸地像元 38 462 500 92.4
列像元 306 494 800
生产者精度/% 87.6 93.5
总精度/% 91.2 Kappa=0.81
Tab.5  Landsat8卫星影像分类精度评价
[1] 胡敏, 唐倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5):15-19.
Hu M, Tang Q, Peng J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5):15-19.
[2] 黄辉军, 刘红年, 蒋维楣, 等. 南京市PM2.5物理化学特性及来源解析[J]. 气候与环境研究, 2006, 11(6):713-722.
Huang H J, Liu H N, Jiang W M, et al. Physical and chemical characteristics and source apportionment of PM2.5 in Nanjing[J]. Climatic and Environmental Research, 2006, 11(6):713-722.
[3] 陈瑞敏, 吴雁, 康文英, 等. 连续雾霾天气污染物浓度变化及天气形势特征分析[J]. 气候与环境研究, 2014, 19(2):209-218.
Chen R M, Wu Y, Kang W Y, et al. Analysis of pollutant concentrations and characteristics of continuous smoggy weather[J]. Climatic and Environmental Research, 2014, 19(2):209-218.
[4] 王社扣, 王体健, 石睿, 等. 南京市不同类型扬尘源排放清单估计[J]. 中国科学院大学学报, 2014, 31(3):351-359.
Wang S K, Wang T J, Shi R, et al. Estimation of different fugitive dust emission inventory in Nanjing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):351-359.
[5] 方小珍, 孙列, 毕晓辉, 等. 宁波城市扬尘化学组成特征及其来源解析[J]. 环境污染与防治, 2014, 36(1):55-59.
Fang X Z, Sun L, Bi X H, et al. The chemical compositions and sources apportionment of re-suspended dust in Ningbo[J]. Environmental Pollution and Control, 2014, 36(1):55-59.
[6] Gillette D A, Passi R. Modeling dust emission caused by wind erosion[J]. Journal of Geophyysical Research-Atmospheres, 1988, 93(d11):14233-14242.
[7] 潘月云, 李楠, 郑君瑜, 等. 广东省人为源大气污染物排放清单及特征研究[J]. 环境科学学报, 2015, 35(9):2655-2669.
Pan Y Y, Li N, Zheng J Y, et al. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2015, 35(9):2655-2669.
[8] 肖晗, 杨晓春, 吴其重, 等. 西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019, 39(1):222-228.
Xiao H, Yang X C, Wu Q Z, et al. Estimate emissions of construction fugitive dust in Xi’an[J]. Acta Scientiae Circumstantiae, 2019, 39(1):222-228.
[9] 薛亦峰, 周震, 黄玉虎, 等. 北京市建筑施工扬尘排放特征[J]. 环境科学, 2017, 38(6):2231-2237.
Xue Y F, Zhou Z, Huang Y H, et al. Fugitive dust emission characteristics from building construction sites of Beijing[J]. Environmental Science, 2017, 38(6):2231-2237.
[10] 刘奥博, 吴其重, 陈雅婷, 等. 北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018, 38(2):471-477.
Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing plain area[J]. China Environmental Science, 2018, 38(2):471-477.
[11] 杨卫芬, 程钟, 张洁, 等. 常州市裸露地面风蚀扬尘排放清单及分布特征研究[J]. 环境监测管理与技术, 2020, 32(2):56-60.
Yang W F, Cheng Z, Zhang J, et al. Research on emission inventory and distribution characteristics of wind erosion dust from bare ground in Changzhou[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(2):56-60.
[12] 熊文成, 徐永明, 李京荣, 等. 天津市扬尘污染源中高分辨率遥感监测[J]. 遥感信息, 2017, 32(3):45-49.
Xiong W C, Xu Y M, Li J R, et al. Urban dust pollution sources monitoring based on medium and high resolution satellite imagery in Tianjin[J]. Remote Sensing Information, 2017, 32(3):45-49.
[13] 邓媛媛, 巫兆聪, 易俐娜, 等. 面向对象的高分辨率影像农用地分类[J]. 自然资源遥感, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
Deng Y Y, Wu Z C, Yi L N, et al. Research on object-oriented classification of agricultural land based on high resolution images[J]. Remote Sensing for Land and Resources, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[14] 李亮, 应国伟, 文学虎, 等. 融合时间特征的高分辨率遥感影像分类[J]. 自然资源遥感, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
Li L, Ying G W, Wen X H, et al. Classification of high spatial resolution remotely sensed images by temporal feature fusion[J]. Remote Sensing for Land and Resources, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[15] 徐媛倩, 姜楠, 燕启社, 等. 郑州市裸露地面风蚀扬尘排放清单研究[J]. 环境污染与防治, 2016, 38(4):22-27.
Xu Y Q, Jiang N, Yan Q S, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou[J]. Environmental Pollution and Control, 2016, 38(4):22-27.
[16] 张立坤, 李令军, 姜磊, 等. 北京建筑施工裸地时空变化及扬尘污染排放[J]. 环境科学, 2019, 40(1):135-142.
Zhang L K, Li L J, Jiang L, et al. Spatial and temporal distribution characteristics and fugitive dust emission of building sites in Beijing[J]. Environmental Science, 2019, 40(1):135-142.
doi: 10.1021/es048761f
[17] 李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10):42-45.
Li D, Mei X D, Zhao H, et al. Comparative analysis of GF-1 and Landsat8 image land use remote sensing interpretation[J]. Engineering of Surveying and Mapping, 2018, 27(10):42-45.
[18] 牛静. 京师一号卫星[J]. 卫星应用, 2019(10):70.
Niu J. Jingshi-1(BNU-1) microsat[J]. Satellite Application, 2019(10):70.
[19] 徐涵秋, 唐菲. 新一代Landsat系列卫星: Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11):3249-3257.
Xu H Q, Tang F. Analysis of new characteristics of the first Landsat8 image and their ecoenvironmental significance[J]. Acta Ecologica Sinica, 2013, 33(11):3249-3257.
doi: 10.5846/stxb
[20] 王振武, 孙佳骏, 于忠义, 等. 基于支持向量机的遥感图像分类研究综述[J]. 计算机科学, 2016, 43(9):11-17.
Wang Z W, Sun J J, Yu Z Y, et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 2016, 43(9):11-17.
[21] 吴非权, 马海州, 沙占江, 等. 基于决策树与监督、非监督分类方法相结合模型的遥感应用研究[J]. 盐湖研究, 2005, 13(4):9-13.
Wu F Q, Ma H Z, Sha Z J, et al. Combining the decision tree and supervised,unsupervised technique to classify the satellite images[J]. Journal of Salt Lake Research, 2005, 13(4):9-13.
[22] 柏延臣, 王劲峰. 结合多分类器的遥感数据专题分类方法研究[J]. 遥感学报, 2005, 9(5):555-563.
Bo Y C, Wang J F. Combining multiple classifiers for thematic classification of remotely sensed data[J]. Journal of Remote Sensing, 2005, 9(5):555-563.
[23] 吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 自然资源遥感, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
Wu Z J, Zhao S H. A study of enhanced index-based built-up index based on Landsat TM imagery[J]. Remote Sensing for Land and Resources, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
[24] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293.
doi: 10.1016/j.compag.2008.03.009
[25] Woebbecke D M, Meyer G E, Vonbargen K, et al. Color indexes for weed identification under various soil,residue,and lighting conditions[J]. Transactions of The ASAE, 1995, 38(1):259-269.
doi: 10.13031/2013.27838
[26] Meyer G, Hindman T, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3543.
[27] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1):146-168.
doi: 10.1117/1.1631315
[28] 崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息, 2012, 27(5):89-95.
Cui F N, Song X Y, Sun B S, et al. Change detection of winter wheat area based on multi-temporal TM images[J]. Remote Sensing Information, 2012, 27(5):89-95.
[29] 吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1):1-23.
Wu Y Q, Meng T L, Wu S H. Research progress of image thresholding methods in recent 20 years(1994—2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1):1-23.
[30] 周钰哲. 微小卫星特性与应用发展概述[J]. 数字通信世界, 2018(12):26-27.
Zhou Y Z. Overview of microsatellite characteristics and application development[J]. Digital Communication World, 2018(12):26-27.
[1] 于雪英, 江南, 汤君友. “航天清华一号”微小卫星影像湖泊信息提取——以艾比湖为例[J]. 国土资源遥感, 2002, 14(3): 62-64.
[2] 李志中, 王永江, 徐少瑜. 微小卫星对地观测及其应用前景[J]. 国土资源遥感, 2000, 12(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发