Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 106-114    DOI: 10.6046/zrzyyg.2021072
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于无人机多光谱数据的玉米苗株估算
赵晓伟1,2(), 黄杨1(), 汪永强1, 储鼎1
1.黑龙江省测绘科学研究所,哈尔滨 150081
2.中国科学院东北地理与农业生态研究所,长春 130102
Estimation of maize seedling number based on UAV multispectral data
ZHAO Xiaowei1,2(), HUANG Yang1(), WANG Yongqiang1, CHU Ding1
1. Heilongjiang Provincial Research Institute of Surveying and Mapping, Harbin 150081, China
2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
全文: PDF(6082 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为能及时监测和评估东北大面积的玉米出苗情况,估算苗株数,依据低空无人机(unmanned aerial vehicle,UAV)遥感影像为玉米苗株数的快速估算提供有效支持。研究基于UAV多光谱数据,通过对比ExG,GBDI,ExG-ExR,NGRDI,GLI等颜色指数分割玉米与土壤背景,借助OTSU算法确定最佳阈值,选定最佳颜色指数ExG。优化出最佳形态学特征参数的组合: 面积A、周长B、矩形长D、矩形周长G、椭圆长轴长度H、形状因子Q。借助支持向量机回归(support vector regression,SVR)模型,预测出玉米苗株数,评价精度,并估算和绘制了局地玉米苗株数的空间分布图。该SVR模型测试的精度达到96.54%,统计误差为0.6%。研究成果能够在短时间内迅速、快捷、准确地预测玉米苗株数和长势趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓伟
黄杨
汪永强
储鼎
关键词 UAV苗株数支持向量机回归颜色指数    
Abstract

To monitor and evaluate maize seedlings in Northeast China and estimate their number in time, this study provided effective support for the rapid estimation of the maize seedling number using unmanned aerial vehicle (UAV) remote sensing images. Using the multispectral UAV data, the color indexes ExG, GBDI, ExG-ExR, NGRDI, and GLI were compared to segment maize seedlings from the soil background. Then, the optimal threshold was determined using the Otsu algorithm, and ExG was selected as the optimal color index. According to optimization, the best combination of morphological parameters consists of area (A), perimeter (B), rectangle length (D), rectangle perimeter (G), ellipse long axis length (H), and shape factor (Q). Then, the number of maize seedlings was predicted using the support vector regression (SVR) model and the prediction accuracy was assessed. Finally, the spatial distribution map of the local maize seedling number was developed. Tests revealed that the accuracy and the statistical error of the SVR model were 96.54% and 0.6%, respectively. These results allow the number and growth trends of maize seedlings to be predicted quickly and accurately in a short time.

Key wordsUAV    seedling number    support vector regression (SVR)    color index
收稿日期: 2021-03-15      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“土壤水分与表面粗糙度的光学与雷达遥感协同反演算法研究”编号资助(41971323)
通讯作者: 黄杨
作者简介: 赵晓伟(1991-),男,硕士,助理工程师,主要从事环境遥感方面的研究。Email: 614639191@qq.com
引用本文:   
赵晓伟, 黄杨, 汪永强, 储鼎. 基于无人机多光谱数据的玉米苗株估算[J]. 自然资源遥感, 2022, 34(1): 106-114.
ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021072      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/106
Fig.1  研究区及监测样方
Fig.2  原始UAV影像的部分特征参数
Fig.3  杂草去除
Fig.4  样方23不同指数下的数据结果
Fig.5  不同方法去除杂草效果
Fig.6  基于ExG指数估算株数训练和测试结果
指数 训练集 测试集
RMSE R2 RMSE R2
NGRDI 0.019 4 0.834 3 0.018 6 0.807 3
ExG-ExR 0.013 1 0.828 6 0.018 7 0.819 8
GBDI 0.014 5 0.832 1 0.019 8 0.802 3
ExG 0.010 3 0.877 2 0.018 7 0.862 6
GLI 0.015 7 0.813 1 0.016 1 0.803 1
Tab.1  各个指数训练和测试精度
Fig.7  特征参数实测株数的Pearson系数
参数个数 组合方式 最优组合 训练集R2 测试集R2
1 7 A 0.806 8 0.808 1
2 21 AH 0.879 2 0.865 4
3 35 ADH 0.931 7 0.946 7
4 35 ABDF 0.946 2 0.954 8
5 21 ABDFH 0.963 1 0.962 1
6 7 ABDGHQ 0.986 4 0.965 4
7 1 ABDFGHQ 0.954 2 0.961 3
Tab.2  特征参数组合
Fig.8  实测株数和预测株数的比较分析

实测株数
预测株数
1 2 3 4 5 6 7 相对误差
1 732 22 0.029
2 9 175 6 0.031
3 6 68 2 0.105
4 4 19 1 0.208
5 2 8 0.200
6 1 0
7 0
Tab.3  实测株数和预测株数的过高过低估计
Fig.9  不同尺度监测单元的苗对象识别效果
Fig.10  随机矩形地块及其出株数
[1] Liu P, Guo W S, Xu Y M, et al. Effect of planting density on grain yield and quality of weak gluten and medium-gluten wheat[J]. Journal of Triticeae Crops, 2006, 26:117-121.
[2] 葛朝红, 孟建朝, 赵海龙. 影响棉花出苗的因素分析[J]. 现代农村科技, 2011(18):13.
Ge C H, Meng J C, Zhao H L. Analysis of factors affecting cotton emergence[J]. Modern Rural Science and Technology, 2011(18):13.
[3] 胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1):20-30.
Hu J B, Zhang J. Unmanned aerial vehicle remote sensing in ecology:Advances and prospects[J]. Acta Ecologica Sinica, 2018, 38(1):20-30.
[4] 戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感多光谱影像的棉花倒伏信息提取[J]. 农业工程学报, 2019, 35(2):63-70.
Dai J G, Zhang G S, Guo P, et al. Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2):63-70.
[5] Mitch B, Reid A, Ramos F, et al. Airbornevision based mapping and classification of large farmland environments[J]. Journal of Field Robotics, 2010, 27(5):632-655.
doi: 10.1002/rob.20343
[6] 丁雷龙, 李强子, 杜鑫, 等. 基于无人机图像颜色指数的植被识别[J]. 自然资源遥感, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
Ding L L, Li Q Z, Du X, et al. Vegetation extraction method based on color indices from UAV images[J]. Remote Sensing for Land and Resources, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
[7] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.
Wang X Q, Wang M M, Wang S Q, et a1. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-159.
[8] 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2):1-19.
Lan Y B, Deng X L, Zeng G L. Advances in diagnosis of crop diseases,pests and weeds by UAV remote sensing[J]. Smart Agriculture, 2019, 1(2):1-19.
[9] Zheng X L, Zhang X F, Cheng J Y, et al. Using the multispectral image data acquired by unmanned aerial vehicle to build an estimation model of the number of seedling stage cotton plants[J]. Journal of Image and Graphics, 2020, 25(3):520-534.
[10] 戴建国, 薛金利, 赵庆展, 等. 利用无人机可见光遥感影像提取棉花苗情信息[J]. 农业工程学报, 2020, 36(4):63-71.
Dai J G, Xue J L, Zhao Q Z, et al. Extraction of cotton seedling growth information using UAV visible light remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4):63-71.
[11] 刘帅兵, 杨贵军, 周成全, 等. 基于无人机遥感影像的玉米苗期株数信息提取[J]. 农业工程学报, 2018, 34(22):69-77.
Liu S B, Yang G J, Zhou C Q, et al. Extraction of maize seedling number information based on UAV imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22):69-77.
[12] Zhao B, Zhang J, Yang C H, et al. Rapeseed seedling stand counting and seeding performance evaluationat two early growth stages based on unmanned aerial vehicle imagery[J]. Frontiers in Plant Science, 2018, 9:1362.
doi: 10.3389/fpls.2018.01362
[13] Han L, Yang G J, Dai H Y, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019, 15(1):10.
doi: 10.1186/s13007-019-0394-z
[14] Woebbecke D M, Meyer G E, Bargen K V, et al. Color indices for weed identification under various soil,residue,and lighting conditions[J]. Transactions of the ASABE, 1995, 38(1):259-269.
[15] Verrelst J, Schaepman M E, Koetz B, et al. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data[J]. Remote Sensing of Environment, 2008, 112(5):2341-2353.
doi: 10.1016/j.rse.2007.11.001
[16] Motohka T, Nasahara K N, Oguma H, et al. Applicability of green-red vegetation index for remote sensing of vegetation phenology[J]. Remote Sensing, 2010, 2(10):2369-2387.
doi: 10.3390/rs2102369
[17] Liu G R, Huang Z, Mao S C, et al. Application study about OTSU optimal threshold method in cotton seedling recognition[J]. Cotton Science, 2013, 25(1):86-89.
[18] 刘广瑞, 黄真, 毛树春, 等. OTSU最佳阈值法在棉花幼苗识别中的应用研究[J]. 棉花学报, 2013, 25(1):86-89.
Liu G R, Huang Z, Mao S C, et al. Application study about OTSU optimal threshold method in cotton seedling recognition[J]. Cotton Science, 2013, 25(1):86-89.
[19] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man and Cybernetics, 1979, 9(1):62-66.
doi: 10.1109/TSMC.1979.4310076
[20] Pal M. Kernel methods in remote sensing:A review[J]. ISH Journal of Hydraulic Engineering, 2009:15194-15215.
[21] Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features[J]. Computers and Electronics in Agriculture, 2018, 145:153-160.
doi: 10.1016/j.compag.2017.12.032
[22] Zheng Y, Zhu Q B, Huang M, et al. Maize and weed classification using color indices with support vector data description in outdoor fields[J]. Computers and Electronics in Agriculture, 2017, 141:215-222.
doi: 10.1016/j.compag.2017.07.028
[1] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
[2] 鲁恒, 付萧, 刘超, 郭加伟, 苟思, 刘铁刚. 基于无人机影像的快速分割方法[J]. 国土资源遥感, 2016, 28(2): 72-78.
[3] 丁雷龙, 李强子, 杜鑫, 田亦陈, 袁超. 基于无人机图像颜色指数的植被识别[J]. 国土资源遥感, 2016, 28(1): 78-86.
[4] 贺一楠, 耿娟, 秦军, 刘晨, 杨辉. 结合Forstner与NCC约束的UAV图像配准研究[J]. 国土资源遥感, 2015, 27(1): 48-54.
[5] 何海清. 一种无人机影像分块的亚像素角点快速检测算法[J]. 国土资源遥感, 2012, 24(4): 21-25.
[6] 李朝奎, 周国清. 基于DLT算法的微型无人机(MUAV)视频影像的几何纠正方法[J]. 国土资源遥感, 2006, 18(4): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发