Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 202-211    DOI: 10.6046/zrzyyg.2021163
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
秦皇岛段明长城时序InSAR遥感动态监测
刘辉1,2,3(), 徐心月1,2,3(), 陈蜜1,2,3, 陈富龙4, 丁瑞力1,2,3, 刘菲1,2,3
1.首都师范大学资源环境与旅游学院,北京 100048
2.首都师范大学城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
3.首都师范大学水资源安全北京实验室,北京 100048
4.中国科学院空天信息创新研究院,北京 100094
Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao
LIU Hui1,2,3(), XU Xinyue1,2,3(), CHEN Mi1,2,3, CHEN Fulong4, DING Ruili1,2,3, LIU Fei1,2,3
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
2. State Key Laboratory of Urban Environmental Process and Digital Simulation, Capital Normal University, Beijing 100048, China
3. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China
4. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(12943 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地面沉降是京津冀地区常见的地质灾害之一,地面不均匀沉降对于明长城的保护存在着潜在威胁,从而造成不可逆转的损失。文章采用2016—2018年的53景Sentinel-1数据,基于永久散射体合成孔径雷达干涉测量(persistent scatterer interferometric synthetic aperture Radar,PS-InSAR)和小基线集(small baseline subsets,SBAS)技术获取秦皇岛段明长城地表形变信息。将合成孔径雷达(synthetic aperture Radar,SAR)数据基于不同的处理方法获取的形变结果进行交叉验证检验监测结果的精度,得到两者数据线性相关性R2达到0.81。结合地下水水位变化、地质构造、地层岩性数据、土地利用数据及高速公路铁路分布等辅助数据,对明长城沿线沉降进行成因分析。最后基于广义回归神经网络(generalized regression neural network,GRNN)对明长城沉降进行预测。结果表明: 秦皇岛段明长城沿线表现出不同程度的形变,形变严重的区域主要集中在东部及东北部区域,最大沉降速率超过-12 mm/a; 地面沉降与地下水开采关联不大; 明长城在与断裂带相遇前后沉降速率表现出微小差异; 沉降严重区主要发生在第四系全新统黏土层; 交通道路运营暂时未对明长城沿线沉降造成较大影响。GRNN预测结果表明未来明长城沿线沉降有逐渐增大的趋势,部分区域需要重点关注。研究对位于山地地貌明长城进行系统的监测和整体保护提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘辉
徐心月
陈蜜
陈富龙
丁瑞力
刘菲
关键词 明长城地表形变时序InSARGRNN沉降预测    
Abstract

Land subsidence is a common geological disaster in the Beijing-Tianjin-Hebei region. The uneven land subsidence poses a potential threat to the protection of the Great Wall of the Ming Dynasty (the Ming Great Wall), thus causing irreversible losses. This study acquired information about the surface deformation of the Qinhuangdao section of the Ming Great Wall from 53 scenes of the Sentinel-1 data during 2016—2018 using the persistent scatterer interferometric synthetic aperture Radar (PS-InSAR) and the small baseline subsets (SBAS). The accuracy of the monitoring results was determined by the cross-validation of the deformation results obtained using different processing methods based on synthetic aperture Radar (SAR) data, yielding linear correlation with a coefficient of determination R2 of 0.81 between the two types of data. Then, this study analyzed the causes of the land subsidence along the Ming Great Wall based on auxiliary data, such as changes in the groundwater level, geological structures, stratigraphic lithology, land use, and the distribution of highways and railways. Finally, the land subsidence of the Ming Great Wall was predicted using the generalized regression neural network (GRNN). The results are as follows: ① The Qinhuangdao section of the Ming Great Wall exhibits varying degrees of deformation, with the severe deformation primarily distributed in the eastern and northeastern regions and a maximum subsidence rate of more than -12 mm/a; ② The land subsidence is slightly related to groundwater exploitation; ③ The land subsidence rate of the Ming Great Wall differ slightly before and after the great wall encounters the fault zone; ④ The areas with severe land subsidence are mainly distributed in the Quaternary Holocene clay layer; ⑤ Traffic road operation has not caused any great impact on the settlement along the Ming Great Wall. The GRNN-based prediction results show that the land subsidence along the Ming Great Wall will gradually increase in the future, and special attention should be paid to some areas. This study will provide technical support for the systematic monitoring and overall protection of the sections of the Ming Great Wall located in mountainous areas.

Key wordsGreat Wall of the Ming Dynasty    surface deformation    time-series InSAR    GRNN    subsidence prediction
收稿日期: 2021-05-25      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“城市群地质环境演化多源遥感监测与预警”(2017YFB0503803)
通讯作者: 徐心月(1994-),女,硕士,研究方向为InSAR形变监测。Email: 389164487@qq.com
作者简介: 刘 辉(1996-),男,硕士,研究方向为InSAR形变监测、遥感图像处理。Email: huixyt@163.com
引用本文:   
刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021163      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/202
Fig.1  研究区范围及明长城示意图
Fig.2  本文整体技术路线
Fig.3  PS-InSAR技术处理流程
Fig.4  SBAS技术处理流程
Fig.5  PS方法处理生成的时空基线连接图
Fig.6  SBAS方法处理生成的时空连接图
Fig.7  PS-InSAR和SBAS监测沉降速率
Fig.8  PS与SBAS方法监测沉降速率相关性
Fig.9  研究区断裂带分布
Fig.10  明长城沿线沉降速率纵向剖面及断裂带位置
Fig.11  2016—2018年研究区土地利用类型面积变化
Fig.12  山海关城区内沉降区域遥感影像
Fig.13  明长城沿线沉降与地层岩性的关系
Fig.14  2016—2018年秦皇岛市平原地区浅层地下水埋深分区
Fig.15  明长城与高速公路和铁路位置示意图及横向剖面
Fig.16  明长城沿线沉降预测点
Fig.17  P1,P2与P3点累积沉降量
Fig.18  不同光滑因子对应的预测误差
Fig.19  预测值和实际值比较
Fig.20  明长城沿线沉降预测点累积沉降量预测
[1] Tarchi D, Rudolf H, Pieraccini M, et al. Remote monitoring of buildings using a ground-based SAR:Application to cultural heritage survey[J]. International Journal of Remote Sensing, 2000, 21(18):3545-3551.
doi: 10.1080/014311600750037561
[2] Tapete D, Cigna F. InSAR data for geohazard assessment in UNESCO World Heritage sites:State-of-the-art and perspectives in the Copernicus era[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63:24-32.
doi: 10.1016/j.jag.2017.07.007
[3] 何海英, 陈彩芬, 陈富龙, 等. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1):205-213.doi:10.6046/gtzyyg.2020107.
doi: 10.6046/gtzyyg.2020107
He H Y, Chen C F, Chen F L, et al. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sent inel-1 SBAS-InSAR approach[J]. Remote Sensing for Land and Resources, 2021, 33(1):205-213.doi:10.6046/gtzyyg.2020107.
doi: 10.6046/gtzyyg.2020107
[4] Chen F L, Guo H D, Ma P F, et al. Radar interferometry offers new insights into threats to the Angkor site[J]. Science Advances, 2017, 3(3):e1601284.
doi: 10.1126/sciadv.1601284
[5] Tang P, Chen F L, Zhu X K, et al. Monitoring cultural heritage sites with advanced multi-temporal InSAR technique:The case study of the summer palace[J]. Remote Sensing, 2016, 8(5):432.
doi: 10.3390/rs8050432
[6] Zhou W, Chen F L, Guo H D. Differential Radar interferometry for structural and ground deformation monitoring:A new tool for the conservation and sustainability of cultural heritage sites[J]. Sustainability, 2015, 7(2):1712-1729.
doi: 10.3390/su7021712
[7] 周玉营, 陈蜜, 宫辉力, 等. 基于时序InSAR的京津高铁北京段地面沉降监测[J]. 地球信息科学学报, 2017, 19(10):1393-1403.
doi: 10.3724/SP.J.1047.2017.01393
Zhou Y Y, Chen M, Gong H L, et al. The subsidence monitoring of Beijing-Tianjin high-speed railway based on PS-InSAR[J]. Journal of Geo-Information Science, 2017, 19(10):1393-1403.
[8] Berardino P, Fornaro G, La N R, et al. A new algorithm for surface deformation based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 11(40):2375-2383.
[9] 王艳, 葛大庆, 张玲, 等. 升降轨PS InSAR地面沉降监测结果的互检验与时序融[J]. 国土资源遥感, 2014, 26(4):125-130.doi:10.6046/gtzyyg.2014.04.20.
doi: 10.6046/gtzyyg.2014.04.20
Wang Y, Ge D Q, Zhang L, et al. Inter-comparison and time series fusion of ascending and descending PS InSAR data for land subsidence monitoring[J]. Remote Sensing for Land and Resources, 2014, 26(4):125-130.doi:10.6046/gtzyyg.2014.04.20.
doi: 10.6046/gtzyyg.2014.04.20
[10] 郝文辉, 苏凯, 郭巨, 等. 秦皇岛市地质灾害现状特征及防治体系建设探讨[J]. 地下水, 2016, 38(5):176-178.
Hao W H, Su K, Guo J, et al. Geo-hazard current situation and prevention construction system in Qinhuangdao City[J]. Ground Water, 2016, 38(5):176-178.
[11] 廖东, 戴洪宝, 许继影. 基于Landsat8监督分类与非监督分类的土地利用分类方法比较[J]. 河南科技, 2019(8):14-16.
Liao D, Dai H B, Xu J Y. Comparison of land use classification methods based on Landsat8 supervised classification and unsupervised classification[J]. Henan Science and Technology, 2019(8):14-16.
[12] 祝秀星, 陈蜜, 宫辉力, 等. 采用时序InSAR技术监测北京地铁网络沿线地面沉降[J]. 地球信息科学学报, 2018, 20(12):1810-1819.
doi: 10.12082/dqxxkx.2018.180322
Zhu X X, Chen M, Gong H L, et al. The subsidence monitoring along Beijing subway network based on MT-InSAR[J]. Journal of Geo-Information Science, 2018, 20(12):1810-1819.
[13] 金帅军. 基于GRNN神经网络的农作物虫害量预测系统设计[D]. 呼和浩特: 内蒙古工业大学, 2013.
Jin S J. Design the prediction of system insect pests of crop based on GRNN neural network[D]. Huhhot: Inner Mongolia University of Technology, 2013.
[14] 曹波, 罗飞, 许玉格. 基于GRNN的污水出水水质预测模型[J]. 环境卫生工程, 2011, 19(6):1-3.
Cao B, Luo F, Xu Y G. A prediction model based on GRNN for sewage discharge quality[J]. Environmental Sanitation Engineering, 2011, 19(6):1-3.
[15] 魏晋雁, 茹锋. 采用GRNN模型进行交通量预测及实现研究[J]. 长沙交通学院学报, 2006(2):46-50.
Wei J Y, Ru F. Forecasting the traffic volume by the model of GRNN and studing it’s realization[J]. Journal of Changsha Communications University, 2006(2):46-50.
[1] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
[2] 葛大庆, 王艳, 范景辉, 刘圣伟, 郭小方, 王毅. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 19(4): 14-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发