Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 53-60    DOI: 10.6046/zrzyyg.2022280
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于GF-2影像和随机森林算法的花岗伟晶岩提取
杜晓川1,2(), 娄德波2(), 徐林刚1, 范莹琳1,2, 张琳1, 李婉悦1,2
1.中国地质大学(北京)地球科学与资源学院,北京 100083
2.中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京 100037
Extracting granite pegmatite information based on GF-2 images and the random forest algorithm
DU Xiaochuan1,2(), LOU Debo2(), XU Lingang1, FAN Yinglin1,2, ZHANG Lin1, LI Wanyue1,2
1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
全文: PDF(3629 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

花岗伟晶岩是花岗伟晶岩型锂矿的重要载体及找矿标志,青海省天峻县扎卡东南部一带有较好的锂矿找矿潜力,但该地区具有海拔高、切割深等特点,使得实地地表调查难度较大,因此采用随机森林算法对研究区花岗伟晶岩进行遥感提取,以GF-2高空间分辨率遥感影像为数据源提取研究区域各类型地物的光谱特征、纹理特征、指数特征、地形特征、边缘特征及文中新引入的限制对比度自适应直方图均衡化(contrast limited adaptive hitogram equalization,CLAHE)特征等25个特征变量构建特征子集,对子集中的特征变量进行特征重要性评估,依据特征重要性得分进行特征优选,确定提取花岗伟晶岩的最优特征组合,最终选取16个特征变量进行随机森林分类,对分类结果进行精度评价。研究表明: ①CLAHE特征变量有利于突出地物间的色调差异,有助于分类精度的提升,其总体精度上升2.7百分点,Kappa系数上升0.035; ②基于GF-2影像和随机森林算法的分类结果的总体精度达到了93.1%,Kappa系数达到0.902,花岗伟晶岩用户精度达到94.24%,生产者精度达到 98.00%,证实方法的有效性,同时也为该地区进一步工作提供真实可靠的资料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜晓川
娄德波
徐林刚
范莹琳
张琳
李婉悦
关键词 花岗伟晶岩随机森林算法CLAHE特征重要性青海省    
Abstract

Granite pegmatites serve as a significant carrier and prospecting marker of granite pegmatite-type lithium deposits. The southeastern Zhaka area in Tianjun County, Qinghai Province demonstrates considerable prospecting potential for lithium deposits. Nevertheless, its high altitudes and deep cross-cutting characteristics pose challenges in surface surveys. Hence, this study extracted the granite pegmatite information within the study area from remote sensing images using the random forest algorithm. With high-spatial-resolution GF-2 remote sensing images as the primary data source, it extracted the spectral, texture, exponential, topographic, and edge features from various ground objects within the study area. These features, together with the newly introduced contrast limited adaptive histogram equalization (CLAHE) features, constituted 25 feature variables, forming a feature subset. Then, feature variables in the subset were evaluated for their feature importance, and their importance scores were used for feature selection, determining the optimal feature combination for extracting granite pegmatite information. Ultimately, 16 feature variables were chosen for random forest classification, with the accuracy of the classification results assessed. The study indicates that: ①The CLAHE feature variables emphasize the tonal variations among ground objects, thereby enhancing the classification accuracy, with the overall accuracy increased by 2.7 percentage points and the Kappa coefficient increased by 0.035; ②The classification results for granite pegmatites based on GF-2 images and the random forest algorithm exhibited overall accuracy of 93.1%, with a Kappa coefficient of 0.902, user accuracy of 94.24%, and producer accuracy of 98.00%, confirming the effectiveness of the method used in this study. Moreover, this study provides reliable data for future research in the study area.

Key wordsgranite pegmatite    random forest algorithm    CLAHE    feature importance    Qinghai Province
收稿日期: 2022-07-05      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“西部伟晶岩型粘土型锂等稀有金属成矿规律与潜力评价”(2021YFC2901905);基本科研业务费项目“中国铅锌银矿床成矿规律研究”(KK2202)
通讯作者: 娄德波(1979-),男,教授级高级工程师,主要从事矿产资源评价研究。Email: llddbb_e@126.com
作者简介: 杜晓川(1995-),男,硕士研究生,资源与环境专业。Email: 1169954017@qq.com
引用本文:   
杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022280      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/53
Fig.1  研究区遥感影像
波段 波段范围/μm 空间分辨率/m 幅宽/km 重访周期/d
Pan 0.45~0.90 1 45 5
Blue 0.45~0.52 4
Green 0.52~0.59
Red 0.63~0.69
NIR 0.77~0.89
Tab.1  GF-2全色多光谱相机波段参数
Fig.2  影像块样本
参数名 取值范围 最优值
n_estimators 1,2,3,…,1 000 150
max_features Auto,Sqrt,Log2 Auto
max_depth 1,2,3,…,200 50
min_samples_split 2,3,…,100 4
min_samples_leaf 1,2,3,…,60 1
Tab.2  最优参数组合
Fig.3  特征重要性排序
Fig.4  特征变量个数与测试集精度关系
Fig.5  地物波谱曲线
Fig.6  研究区地物分类结果
地物类别 用户
精度/%
生产者
精度/%
错分
误差/%
漏分
误差/%
总体
精度/%
Kappa
系数
花岗伟晶岩 94.24 98.00 5.76 2.00 93.10 0.902
道路 94.73 81.81 5.27 18.19
冰雪 98.04 98.04 1.96 1.96
阳坡裸地 94.44 95.13 5.56 4.87
干涸河流 81.61 73.19 18.39 26.81
阴坡裸地 93.23 94.98 6.77 5.02
Tab.3  分类结果的精度统计
地物类别 用户
精度/%
生产者
精度/%
错分
误差/%
漏分
误差/%
总体
精度/%
Kappa
系数
花岗伟晶岩 93.27 97.00 6.73 3.00 90.40 0.864
道路 94.74 85.71 5.26 14.29
冰雪 98.04 98.04 1.96 1.96
阳坡裸地 90.58 93.28 9.42 6.72
干涸河流 78.16 62.39 21.84 37.61
阴坡裸地 91.08 93.38 8.92 6.62
Tab.4  14个特征的分类结果精度统计
Fig.7  干涸河流影像对比
[1] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.
Wang D H. Study on critical mineral resources:Signficance of research,determiniation of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209.
[2] 王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布:远景区预测[J]. 地球学报, 2020, 41(6):797-806.
Wang X Q, Liu H L, Wang W, et al. Geochemical abundance and spatial distribution of lithium in China:Implications for potential prospects[J]. Acta Geoscientica Sinica, 2020, 41(6):797-806.
[3] 唐军. 浅析典型伟晶岩型锂矿床成矿地质特征[J]. 世界有色金属, 2020(14):143-144.
Tang J. A brief analysis of metallogenic characteristics of typical pegmatite type lithium deposits[J]. World Nonferrous Metals, 2020(14):143-144.
[4] 姚佛军, 徐兴旺, 杨建民, 等. 戈壁浅覆盖区花岗岩中锂铍伟晶岩的ASTER遥感识别技术——以新疆镜儿泉地区为例[J]. 矿床地质, 2020, 39(4):686-696.
Yao F J, Xu X W, Yang J M, et al. A technology for identifying Li-Be pegmatite using ASTER remote sensing data in granite of Gobi shallow-covered area:A case study of recognition and prediction of Li-Be pegmatite in Jingerquan,Xinjiang[J]. Mineral Deposits, 2020, 39(4):686-696.
[5] 代晶晶, 王登红, 代鸿章, 等. 遥感技术在川西甲基卡大型锂矿基地找矿填图中的应用[J]. 中国地质, 2017, 44(2):389-398.
Dai J J, Wang D H, Dai H Z, et al. Geological mapping and ore-prospecting study using remote sensing technology in Jiajika area of Western Sichuan Province[J]. Geology in China, 2017, 44(2):389-398.
[6] 代晶晶, 王登红, 代鸿章, 等. 川西甲基卡锂矿基地典型岩石及矿物反射波谱特征研究[J]. 岩矿测试, 2018, 37(5):507-517.
Dai J J, Wang D H, Dai H Z, et al. Reflectance spectral characteristics of rocks and minerals in Jiajika lithium deposits in West Sichuan[J]. Rock and Mineral Analysis, 2018, 37(5):507-517.
[7] Cardoso-Fernandes J, Teodoro A C, Lima A. Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76:10-25.
doi: 10.1016/j.jag.2018.11.001
[8] 王海宇. 基于深度语义分割的遥感影像伟晶岩脉信息提取研究[D]. 北京: 中国地质大学(北京), 2021.
Wang H Y. Research on extracting pegmatite dike information of remote sensing image based on depth semantic segmentation[D]. Beijing: China University of Geosciences(Beijing), 2021.
[9] Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests:A survey and results of new tests[J]. Pattern Recognition, 2011, 44(2):330-349.
doi: 10.1016/j.patcog.2010.08.011
[10] 王书玉, 张羽威, 于振华. 基于随机森林的洪河湿地遥感影像分类研究[J]. 测绘与空间地理信息, 2014, 37(4):83-85,93.
Wang S Y, Zhang Y W, Yu Z H. Classification of Honghe wetland remote sensing image based on random forests[J]. Geomatics & Spatial Information Technology, 2014, 37(4):83-85,93.
[11] Dronova I. Object-based image analysis in wetland research:A review[J]. Remote Sensing, 2015, 7(5):6380-6413.
doi: 10.3390/rs70506380
[12] 陈海洋, 孟令奎, 周元. 基于随机森林的遥感影像雪冰云信息检测方法[J]. 测绘地理信息, 2022, 47(2):105-110.
Chen H Y, Meng L K, Zhou Y. Ice snow and cloud detection in remote sensing images based on random forest[J]. Journal of Geomatics, 2022, 47(2):105-110.
[13] Feng Q, Liu J, Gong J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis[J]. Remote Sensing, 2015, 7(1):1074-1094.
doi: 10.3390/rs70101074
[14] Dell'Acqua F, Gamba P. Texture-based characterization of urban environments on satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):153-159.
doi: 10.1109/TGRS.2002.807754
[15] Stasolla M, Gamba P. Spatial indexes for the extraction of formal and informal human settlements from high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2):98-106.
doi: 10.1109/JSTARS.4609443
[16] Feng Q, Gong J, Liu J, et al. Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier:The case of Yuyao,China[J]. Remote Sensing, 2018, 7(9):12539-12562.
doi: 10.3390/rs70912539
[17] Ali A, Pour A. Lithological mapping and hydrothermal alteration using Landsat 8 data:A case study in ariab mining district,red sea hills,Sudan[J]. International Journal of Sciences Basic and Applied Sciences, 2014, 3(3):199-208.
[18] 郭霞. 基于Landsat-8 OLI遥感数据的随机森林分类优化研究[D]. 秦皇岛: 燕山大学, 2021.
Guo X. Optimization research of random forest classification based on Landsat-8 OLI remote sensing images[D]. Qinghuangdao: Yanshan University, 2021.
[19] 刘念. 基于坎尼边缘检测算法的遥感影像自动绘图研究[J]. 测绘地理信息, 2016, 41(6):75-78.
Liu N. Automatic mapdrawing of remote sensing images based on Canny edge detection algorithm[J]. Journal of Geomatics, 2016, 41(6):75-78.
[20] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[21] 张佳华, 姚宜斌, 曹娜. 基于决策树对有无降水进行预测[J]. 测绘地理信息, 2017, 42(5):107-109.
Zhang J H, Yao Y B, Cao N. Prediction of whether precipitation based on decision tree[J]. Journal of Geomatics, 2017, 42(5):107-109.
[22] Lerman P M. Fitting segmented regression models by grid search[J]. Journal of the Royal Statistical Society:Series C(Applied Statistics), 1980, 29(1):77-84.
[23] 陈红星. 基于多源数据和随机森林算法的建筑物尺度人口估算[D]. 上海: 华东师范大学, 2021.
Chen H X. Population estimation at the building level based on multi-source data and random forest algorithm[D]. Shanghai: East China Normal University, 2021.
[24] 黄东山. 特征选择及半监督分类方法研究[D]. 武汉: 华中科技大学, 2011.
Huang D S. Research on feature selection and semi-supervised classification[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[25] 袁帅, 杨宏晖, 申昇. 基于互信息的顺序向前特征选择算法[J]. 声学技术, 2014, 33(4):359-362.
Yuan S, Yang H H, Shen S. Forward order feature selection algorithm based on mutual information[J]. Technical Acoustics, 2014, 33(4):359-362.
[1] 李根军, 杨雪松, 张兴, 李晓民, 李得林, 杜程. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2): 134-140.
[2] 范玉海, 王辉, 杨兴科, 彭齐鸣, 秦绪文, 杨金中, 张少鹏, 谭富荣. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018, 30(1): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发