Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 71-80    DOI: 10.6046/zrzyyg.2023141
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于国产GF-3雷达影像的农田洪涝遥感监测方法
阳驰轶1,2(), 官海翔1,2, 吴玮3, 刘美玉3, 李颖4,5, 苏伟1,2()
1.中国农业大学土地科学与技术学院,北京 100083
2.农业农村部农业灾害遥感重点实验室, 北京 100083
3.应急管理部国家减灾中心,北京 100124
4.中国气象局河南省农业气象保障与应用技术重点开放实验室,郑州 450003
5.河南省气象科学研究所,郑州 450003
Remote sensing monitoring method for flooded farmland based on domestic GF-3 radar images
YANG Chiyi1,2(), GUAN Haixiang1,2, WU Wei3, LIU Meiyu3, LI Ying4,5, SU Wei1,2()
1. College of Land Science and Technology, China Agricultural University, Beijing 100083,China
2. Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture, Beijing 100083, China
3. National Disaster Reduction Center of China, Ministry of Emergency Management of the People’s Republic of China, Beijing 100124,China
4. Henan Agrometeorological Support and Applied Technique Key Laboratory, China Meteorological Administration, Zhengzhou 450003, China
5. Henan Institute of Meteorological Sciences, Zhengzhou 450003, China
全文: PDF(8428 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在全球气候变暖背景下,愈发频繁的洪涝灾害是造成我国粮食作物减产的主要农业灾害之一。雷达遥感技术具备全天候的对地观测能力,是快速监测区域范围内洪涝灾害信息的一种重要手段。随着人工智能领域的发展,机器学习方法广泛应用于洪涝灾害遥感监测,虽然该类算法具有较高的精度,但其训练过程往往需要大量的野外调查或遥感解译样本支持。为克服样本标记限制、提高区域尺度洪涝灾害监测的精度,本研究以2021年7月20日河南北部特大洪涝事件为背景,利用国产高分三号(GF-3)双极化雷达影像(HH-HV),构建了一种基于弱监督高斯混合模型(gaussian mixture model,GMM)的洪涝淹没作物监测方法,通过该方法提取了豫北部分区域农田洪涝淹没范围。通过对比4种典型的机器学习方法,包括随机森林、支持向量机、K最近邻分类和平行六面体方法,发现该文构建的弱监督GMM方法的精度最高,其总体精度为0.95,Kappa系数为0.90。该研究对于提高基于合成孔径雷达(synthetic aperture radar,SAR)遥感技术监测区域尺度作物洪涝的准确性和普适性具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阳驰轶
官海翔
吴玮
刘美玉
李颖
苏伟
关键词 GF-3雷达影像洪涝农田洪涝淹没高斯混合模型    
Abstract

Against the backdrop of global warming, increasingly frequent floods become a primary agricultural disaster that causes reduced crop production in China. Radar remote sensing technology, possessing all-weather earth observation capabilities, serves as a critical means for rapid monitoring of regional flood information. With the advancement in artificial intelligence, machine learning methods have been extensively applied in the remote sensing-based monitoring of floods. Despite the high accuracy of their algorithms, their training processes often entail extensive field investigations or numerous samples for remote sensing image interpretation. This study aims to overcome sample labeling limitations and improve regional flood monitoring accuracy. Based on the catastrophic flood that occurred in northern Henan on July 20, 2021, this study constructed a flooded crop monitoring method based on the weakly supervised Gaussian mixture model (GMM) using domestic GF-3 HH-HV radar images. Then this method was applied to extract the flooding range of farmland in some areas of northern Henan. Compared to four typical machine learning methods, i.e., random forest (RF), support vector machine (SVM), K-nearest neighbor classification, and parallelepiped classification, the weakly supervised GMM in this study enjoyed the highest accuracy, with overall precision of 0.95 and a Kappa coefficient of 0.90. This study holds great significance for enhancing the accuracy and universality of regional crop flooding monitoring based on remote sensing technology and synthetic aperture radars (SARs).

Key wordsGF-3 radar image    flood    farmland flooding    Gaussian mixture model
收稿日期: 2023-05-17      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:“十四五”国家重点研发计划项目“农情信息空天地高精度高时效智能监测系统研发与应用”之课题三“农情参数高分遥感机理模型与定量解析研究”(2022YFD2001103);国家自然科学基金项目“多源高分光学遥感数据与作物模型同化的不确定性研究”(41805090)
通讯作者: 苏伟(1979 -),女,教授,博士,主要从事作物长势遥感监测、作物灾害遥感监测。Email: suwei@cau.edu.cn
作者简介: 阳驰轶(2002-),女,本科,主要从事基于机器学习方法的自然灾害遥感监测。Email: chiyiyang@cau.edu.cn
引用本文:   
阳驰轶, 官海翔, 吴玮, 刘美玉, 李颖, 苏伟. 基于国产GF-3雷达影像的农田洪涝遥感监测方法[J]. 自然资源遥感, 2023, 35(4): 71-80.
YANG Chiyi, GUAN Haixiang, WU Wei, LIU Meiyu, LI Ying, SU Wei. Remote sensing monitoring method for flooded farmland based on domestic GF-3 radar images. Remote Sensing for Natural Resources, 2023, 35(4): 71-80.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023141      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/71
Fig.1  研究区区位、高程、Sentinel-2影像与河南“7·20”特大暴雨实地调查
Fig.2  豫北部分气象观测站7月15—31日降水量
Fig.3  技术流程
Fig.4  被淹农田与未被淹农田在HH、HV极化的后向散射系数
Fig.5  Sentinel-2光学影像和分类结果的局部图
Fig.6  5种机器学习方法结果精度验证
Fig.7  Sentinel 2光学影像和分类结果的全局图
市区县 被淹农田
面积/km2
总农田面
积/km2
被淹农田占总农田
面积比例/%
新乡县 22.61 268.46 8
凤泉区 13.44 53.70 25
卫滨区 3.72 23.77 16
汤阴县 24.92 473.67 5
北关区 0.80 18.81 4
浚县 115.57 732.32 16
淇县 40.54 255.82 16
红旗区 3.65 56.32 6
淇滨区 4.32 148.73 3
殷都区 0.78 25.76 3
牧野区 9.01 26.50 34
龙安区 4.68 146.00 3
文峰区 10.11 86.56 12
延津县 22.41 713.63 3
卫辉市 100.13 459.42 22
山城区 1.73 75.60 2
鹤山区 0.96 41.70 2
林州市 18.05 609.47 3
Tab.1  各市区县农田洪涝淹没面积
[1] Tong X H, Luo X, Liu S G, et al. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:144-153.
doi: 10.1016/j.isprsjprs.2017.11.006
[2] 徐宗学, 刘琳, 杨晓静. 极端气候事件与旱涝灾害研究回顾与展望[J]. 中国防汛抗旱, 2017, 27(1):66-74.
Xu Z X, Liu L, Yang X J. Study on extreme climate events and drought/flood disasters:Review and prospect[J]. China Flood & Drought Management, 2017, 27(1):66-74.
[3] 曹罗丹, 李加林. 基于遥感与GIS的浙江省洪涝灾害综合风险评估研究[J]. 自然灾害学报, 2015, 24(4):111-119.
Cao L D, Li J L. Integrated risk assessment of flood disaster in Zhejiang Province based on RS and GIS[J]. Journal of Natural Disasters, 2015, 24(4): 111-119.
[4] 王国杰, 胡一凡, 张森, 等. 深度卷积神经网络的遥感影像水体识别[J]. 遥感学报, 2022, 26(11):2304-2316.
Wang G J, Hu Y F, Zhang S, et al. Water identification from the GF-1 satellite image based on the deep convolutional neural networks[J]. National Remote Sensing Bulletin, 2022, 26(11): 2304-2316.
doi: 10.11834/jrs.20210175
[5] 刘宇晨, 高永年. Sentinel时序影像的长江流域地表水体提取[J]. 遥感学报, 2022, 26(2):358-372.
Liu Y C, Gao Y N. Surface water extraction in Yangtze River basin based on sentinel time series image[J]. National Remote Sensing Bulletin, 2022, 26(2):358-372.
doi: 10.11834/jrs.20211287
[6] Shao J L, Gao H, Wang X, et al. Application of Fengyun-4 satellite to flood disaster monitoring through a rapid multi-temporal synthesis approach[J]. Journal of Meteorological Research, 2020, 34(4):720-731.
doi: 10.1007/s13351-020-9184-9
[7] Cohen J, Riihimäki H, Pulliainen J, et al. Implications of boreal forest stand characteristics for X-band SAR flood mapping accuracy[J]. Remote Sensing of Environment, 2016, 186: 47-63.
doi: 10.1016/j.rse.2016.08.016
[8] Jedlovec G. Advances in geoscience and remote sensing[M]. London:Intech, 2009:679-708.
[9] Brisco B, Touzi R, Van der Sanden J J, et al. Water resource applications with RADARSAT-2:A preview[J]. International Journal of Digital Earth, 2008, 1(1):130-147.
doi: 10.1080/17538940701782577
[10] Hess L L, Melack J M. Remote sensing of vegetation and flooding on Magela Creek Floodplain (Northern Territory,Australia) with the SIR-C synthetic aperture radar[J] .Hydrobiologia, 2003, 500:65-82.
doi: 10.1023/A:1024665017985
[11] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3):269-277.
doi: 10.11947/j.AGCS.2017.20170049
Zhang Q J. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269-277.
doi: 10.11947/j.AGCS.2017.20170049
[12] 郭山川, 杜培军, 蒙亚平, 等. 时序Sentinel-1A数据支持的长江中下游汛情动态监测[J]. 遥感学报, 2021, 25(10):2127-2141.
Guo S C, Du P J, Meng Y P, et al. Dynamic monitoring on flooding situation in the middle and lower reaches of Yangtze River region using Sentinel-1A time series[J]. National Remote Sensing Bulletin, 2021, 25(10): 2127-2141.
doi: 10.11834/jrs.20210547
[13] 郁宗桥, 王育红, 刘文宋, 等. 顾及GF-3影像纹理特征的洪涝范围提取方法[J]. 测绘通报, 2022, 542(5):26-31.
Yu Z Q, Wang Y H, Liu W S, et al. Flood extent extraction method based on the texture features of GF-3 images[J]. Bulletin of Surveying and Mapping, 2022, 542(5): 26-31.
[14] Nemni E, Aylett B J, Belabbes S, et al. Fully convolutional neural network for rapid flood segmentation in synthetic aperture radar Imagery[J]. Remote Sensing, 2020(12):2532.
[15] Lyu W T, Yu Q Z, Yu W X. Water extraction in SAR images using GLCM and Support Vector Machine[C]// IEEE 10th International Conference on Signal Processing Proceedings,IEEE, 2010: 740-743.
[16] Zhang S C, Ma Z M, Li Z H, et al. Using CYGNSS data to map flood inundation during the 2021 extreme precipitation in Henan Province,China[J]. Remote Sensing, 2021, 13 (24):5181.
doi: 10.3390/rs13245181
[17] Li Z P, Liu Y L, Cheng Y F, et al. Sentinel-2A MSI and Landsat 8 OLI provide complementary information for estimating chlorophyll-a concentration in a turbid and eutrophic reservoir[J]. Remote Sensing of Environment, 2016, 173:236-247.
[18] 李艳玲, 王加俊. 基于高斯混合模型的纹理图像的分割[J]. 微电子学与计算机, 2004(4):63-65,68.
Li Y L, Wang J J. Texture image segmentation based on Gaussian Mixture Models[J]. Microelectronics & Computer, 2004(4):63-65,68.
[19] Vapnik V. Pattern recognition using generalized portrait method[J]. Automation and Remote Control, 1963(24): 774-780.
[20] Cortes C, Vapnik V N. Support-vector networks[J]. Machine Learning, 1995(20):273-297.
[21] Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.
doi: 10.1109/TIT.1967.1053964
[22] Schowengerdt R A. Remote sensing:Models and methods for image processing[M]. San Diego: Academic Press, 1997:411-412.
[23] 黄敏敏. 基于Seminel-1/2数据的寿光市洪涝灾害监测与预测研究[D]. 南京: 南京信息工程大学, 2022.
Huang M M. Research on flood disaster monitoring and prediction in Shouguang City based on Seminel-1/2 data[D]. Nanjing: Nanjing University of information Science & Technology, 2022.
[24] Wang L H, Ma H, Li J L, et al. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series:A case study of Chongqing[J]. Computers and Electronics in Agriculture, 2022(200):107232.
[1] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[2] 张连翀, 李国庆, 于文洋, 冉全. 基于水平集的洪涝淹没范围时空模拟方法[J]. 国土资源遥感, 2017, 29(1): 92-96.
[3] 胡波, 朱谷昌, 张远飞, 冷超. 基于高斯混合模型的遥感信息提取方法研究[J]. 国土资源遥感, 2012, 24(4): 41-47.
[4] 喻光明, 王朝南, 钟儒刚, 邹尚辉, 张金霞, 赵俊华. 基于DEM的洪涝灾害信息提取与损失估算[J]. 国土资源遥感, 1996, 8(1): 42-50.
[5] 杨忠恩, 徐鹏炜, 骆剑承. 浙江省洪涝灾害遥感监测技术流程及其初步应用[J]. 国土资源遥感, 1995, 7(4): 51-55.
[6] 蔡斌, 陆文杰, 郑新江. 气象卫星条件植被指数监测土壤状况[J]. 国土资源遥感, 1995, 7(4): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发