Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (4): 56-62    DOI: 10.6046/gtzyyg.2014.04.10
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于微缩模型的森林BRF测量
黄华国, 王诗瑞
北京林业大学省部共建森林培育与保护教育部重点实验室, 北京 100083
Measurement of forest BRF based on mini-tree models
HUANG Huaguo, WANG Shirui
Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
全文: PDF(1230 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用林木微缩模型构建不同空间分布的林分,测量林分的双向反射率因子(bidirectional reflectance factor,BRF),并对其反射光谱进行了分析研究。结果显示: 基于微缩模型得到的观测结果整体较符合实际森林的特征,与三维模型模拟结果一致; 在近红外波段,光谱曲线呈典型的“碗边效应”,在观测主平面 “热点效应”较为明显。研究结果证实林木微缩模型可以用于森林BRF研究。对不同林木模型的分布状态与不同的地形条件的测量结果对比分析后发现,林木分布的密度和坡度是较为敏感的参数,其特征与规律性有助于建模反演地表信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘荣杰
张杰
李晓敏
马毅
关键词 资源三号(ZY-3)传感器校正产品定位精度海岸带    
Abstract

Based on mini-tree models, the authors constructed forest stands with different distributions to measure bidirectional reflectance factor (BRF) by a mini goniometer. The results show that the observed BRF of simulated forest canopies is reasonable and inter-compared with a three-dimensional BRF model. The reflectance in different view directions indicates a typical "bowl" shape in the near-infrared band, with significant "hot spot" effects in solar principal plane. The study has confirmed that mini-tree models can be applied to the research on forest BRF. The comparisons between different spatial distributions and terrain conditions of tree models demonstrate that forest density and slope have certain effects on forest BRF. Therefore, their features and regularity can contribute to the inversion of the land surface parameters through modeling.

Key wordsZY-3    sensor corrected image product    position precision    coastal zone
收稿日期: 2013-08-14      出版日期: 2014-09-17
:  S771.8  
基金资助:

国家林业局林业公益性科研专项项目(编号:201104040-2)和国家自然科学基金项目(编号:41171278)共同资助。

作者简介: 黄华国(1978-),男,博士,教授,主要研究方向是植被遥感。Email:huaguo_huang@bjfu.edu.cn。
引用本文:   
黄华国, 王诗瑞. 基于微缩模型的森林BRF测量[J]. 国土资源遥感, 2014, 26(4): 56-62.
HUANG Huaguo, WANG Shirui. Measurement of forest BRF based on mini-tree models. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 56-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.04.10      或      https://www.gtzyyg.com/CN/Y2014/V26/I4/56

[1] Román M O,Gatebe C K,Schaaf C B,et al.Variability in surface BRDF at different spatial scales(30 m~500 m)over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements[J].Remote Sensing of Environment,2011,115(9):2184-2203.

[2] 齐超,成思竹,赵忠义,等.植被双向反射分布函数的模型及其发展[J].光学技术,2007,33(4):487-490,493. Qi C,Cheng S Z,Zhao Z Y,et al.Models of vegetation bidirectional reflectance distribution function and development[J].Optical Technique,2007,33(4):487-490,493.

[3] Chen J M,Leblanc S G.A four-scale bidirectional reflectance model based on canopy architecture[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1316-1337.

[4] Li X W,Strahler A,Woodcock C.A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):466

[5] Myneni R B,Asrar G A three-dimensional radiative transfer method for optical remote sensing of vegetated land surfaces[J].Remote Sensing of Environment,1992,41(2/3):105-121.

[6] Wang Z S,Schaaf C B,Lewis P,et al.Retrieval of canopy height suing moderate-resolution imaging spectroradiometer(MODIS) data[J].Remote Sensing of Environment, 2011,115(6):1595-1601.

[7] Milton E J,Schaepman M E,Adnerson K,et al.Progress in field spectroscopy[J].Remote Sensing of Environment,2009,113(s1):S92-S109.

[8] Sandmeier S,Müller C,Hosgood B,et al.Sensitivity analysis and quality assessment of laboratory BRDF data[J].Remote Sensing of Environment,1998,64(2):176-191.

[9] Sandmeier S R,Itten K I.A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):978-986.

[10] Sandmeier S R.Acquisition of bidirectional reflectance factor data with field goniometers[J].Remote Sensing of Environment,2000,73(3):257-269.

[11] Roman M O,Schaaf C B,Woodcock C E,et al.The MODIS (Collection V005) BRDF/albedo product:Assessment of spatial representativeness over forested landscapes[J].Remote Sensing of Environment,2009,113(11):2476-2498.

[12] Brakke T W,Smith J A,Harnden J M.Bidirectional scattering of light from tree leaves[J].Remote Sensing of Environment,1989,29(2):175-183.

[13] Kuusk A,Kuusk J,Lang M.A dataset for the validation of reflection models[J].Remote Sensing of Environment,2009,113(5):889-892.

[14] Peltoniemi J I,Kaasalainen S,Näränen J,et al.BRDF measurement of understory vegetation in pine forests:Dwarf shrubs,lichen,and moss[J].Remote Sensing of Environment,2005,94(3):343-354.

[15] Kuusk A.A fast invertible canopy reflectance model[J].Remote Sensing of Environment,1995,51(3):342-350.

[16] Combes D,Bousquet L,Jacquemoud S,et al.A new spectrogoniophotometer to measure leaf spectral and directional optical properties[J].Remote Sensing of Environment,2007,109:107-117.

[17] Pisek J,Rautiainenb M,Heiskanenb J,et al.Retrieval of seasonal dynamics of forest understory reflectance in a northern European boreal forest from MODIS BRDF data[J].Remote Sensing of Environment,2012,117:464-468.

[18] 李新,郑小兵,寻丽娜,等.多角度测量系统实现室外BRDF测量[J].光电工程,2008,35(1):66-70. Li X,Zheng X B,Xun L N,et al.Realization of field BRDF acquisition by multiangular measurement system[J].Opto-Electronic Engineering,2008,35(1):66-70.

[19] Qin W,Goel N S.An evaluation of hotspot models for vegetation canopies[J].Remote Sensing Reviews,1995,18:182-306.

[20] Gerard F F,North P R J.Analyzing the effect of structural variability and canopy gaps on forest BRDF using a geometric-optical model[J].Remote Sensing of Environment,1997,62(1):46-62.

[21] Gastellu-Etchegorry J P,Guillevic P,Zagolski F,et al.Modeling BRF and radiation regime of boreal and tropical forests:I.BRF[J].Remote Sensing of Environment,1999,68(3):281-316.

[22] Rautiainen M,Lang M,Mõttus M,et al.Multi-angular reflectance properties of a hemiboreal forest:An analysis using CHRIS PROBA data[J].Remote Sensing of Environment,2008,112(5):2627-2642.

[23] Qin W H,Gerstl S A W.3-D scene modeling of semidesert vegetation cover and its radiation regime[J].Remote Sensing of Environment,2000,74(1):145-162.

[24] 苏红波,王锦地,李小文,等.三维非同温表面热辐射方向性模型的室内模拟实验验证[J].遥感学报,2000,4(s1):71-80. Su H B,Wang J D,Li X W,et al.The indoor simulation and validation of thermal radiation directionality model for three dimensional surface with heterogeneous temperature[J].Journal of Remote Sensing,2000,4(s1):71-80.

[1] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1): 34-42.
[2] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
[3] 苗苗, 谢小平. 基于GIS和RS的山东日照海岸带1988—2018年间演化分析[J]. 国土资源遥感, 2021, 33(2): 237-247.
[4] 韩亚超, 李奇, 张永军, 高子弘, 杨达昌, 陈洁. 机载高光谱仪几何检校方法及其在海岸带航空遥感调查中的示范应用[J]. 国土资源遥感, 2020, 32(1): 60-65.
[5] 金鼎坚, 王建超, 吴芳, 高子弘, 韩亚超, 李奇. 航空遥感技术及其在地质调查中的应用[J]. 国土资源遥感, 2019, 31(4): 1-10.
[6] 韩杰, 陶醉, 李慧娜, 苗宝亮, 石宏斌, 刘其悦. GF-4卫星影像几何定位精度分析[J]. 国土资源遥感, 2019, 31(3): 104-110.
[7] 李健强, 韩海辉, 高婷, 杨敏, 梁楠. 资源三号卫星在地质灾害调查评价中的应用——以宝鸡黄土区为例[J]. 国土资源遥感, 2017, 29(s1): 73-80.
[8] 詹雅婷, 朱叶飞, 苏一鸣, 崔艳梅. 基于国土资源卫星的盐城海岸带生态环境变化调查[J]. 国土资源遥感, 2017, 29(s1): 160-165.
[9] 赵志明, 周小成, 付乾坤, 汪小钦. 基于资源三号影像的建筑物高度信息提取方法[J]. 国土资源遥感, 2015, 27(3): 19-24.
[10] 刘荣杰, 张杰, 李晓敏, 马毅. ZY-3影像在我国海岸带区域的定位精度评价[J]. 国土资源遥感, 2014, 26(3): 141-145.
[11] 刘斌, 孙喜亮, 邸凯昌, 刘召芹. 资源三号卫星传感器校正产品定位精度验证与分析[J]. 国土资源遥感, 2012, 24(4): 36-40.
[12] 冯永玖, 韩震. 基于遥感和GIS的海岸带水域生态景观格局演变研究——以杭州湾北岸上海市段为例[J]. 国土资源遥感, 2011, 23(1): 123-127.
[13] 李振, 黄海军. 胶州湾海岸带土地利用/覆被变化研究[J]. 国土资源遥感, 2010, 22(4): 71-76.
[14] 吴均平, 毛志华, 陈建裕, 白雁, 陈晓东, 潘德炉. 一种加入空间关系的海岸带遥感图像分类方法[J]. 国土资源遥感, 2006, 18(3): 10-14.
[15] 姜义, 李建芬, 康慧, 钟新宝. 渤海湾西岸近百年来海岸线变迁遥感分析[J]. 国土资源遥感, 2003, 15(4): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发