Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (4): 68-73    DOI: 10.6046/gtzyyg.2018.04.11
     本期目录 | 过刊浏览 | 高级检索 |
一种遥感影像自动识别耕地类型的机器学习算法
周询1,2, 王跃宾3, 刘素红1,2(), 于佩鑫1,2, 王西凯1,2
1. 北京师范大学地理学院,北京 100875
2. 北京师范大学地理科学学部,北京 100875
3. 北京师范大学数学科学学院,北京 100875
A machine learning algorithm for automatic identification of cultivated land in remote sensing images
Xun ZHOU1,2, Yuebin WANG3, Suhong LIU1,2(), Peixin YU1,2, Xikai WANG1,2
1. School of Geography, Beijing Normal University, Beijing 100875, China
2. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
3. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
全文: PDF(4329 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

耕地作为重要的土地资源,关系着国家的粮食安全问题,因此迫切需求快速准确获取耕地信息的方法。传统的遥感影像监督分类方法以训练样本和待分类像元/图斑的光谱特征或纹理特征的一致性作为分类依据,这对训练样本的依赖性较强。对此提出了一种基于影像窗口子区的耕地类型自动识别算法,通过提取一定大小影像窗口子区的多光谱和多层次特征,利用机器学习算法,实现影像窗口子区耕地和非耕地类型的自动判别。依据该算法,可以通过建立某个区域内遥感影像耕地类型的特征库,实现对影像窗口子区类别的非监督自动判别,提高目前分类算法的自动化程度。以东北地区高空间分辨率遥感影像为例进行实验,精度达到了90.8%。该算法为耕地信息自动化快速获取提供了技术支持,也可用于遥感影像中某一种纯净地物类型的快速提取。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周询
王跃宾
刘素红
于佩鑫
王西凯
关键词 影像窗口子区特征库机器学习耕地自动识别    
Abstract

As an important kind of land resources, cultivated land is related to the country’s food security. So it is very significant to have a fast and accurate method for obtaining information of cultivated land. The traditional supervised classification methods of remote sensing image are based on the consistency of the spectral features or texture features between the training samples and the pixels/patches to be classified. These methods have strong dependence on training samples. This paper proposes an automatic classification algorithm of cultivated land based on the image window subarea. By using the machine learning algorithm, the automatic classification of cultivated land or non-cultivated land in the sub region of the image window can be realized by extracting the multi-spectral and multi-level features. Using this method, the unsupervised automatic classification of the type of the image window subarea is realized by establishing the feature database of the remote sensing image of the cultivated land in a certain area. With the high spatial resolution remote sensing image of Northeast China as an example, the experimental results show that the accuracy of the automatic classification algorithm is 90.8%. Being able to automatically acquire the cultivated land information, this method can also be used to extract any pure ground object from remote sensing images.

Key wordsimage window subarea    feature database    machine learning    automatic identification of cultivated land
收稿日期: 2017-04-06      出版日期: 2018-12-07
:  TP751  
基金资助:国家自然科学基金项目“典型植被群落结构和光谱参数季节变化的多尺度实验研究”(41171262);水利部公益行业科研专项经费项目“典型黑土区坡耕地土壤侵蚀危害程度研究”共同资助(201501012)
通讯作者: 刘素红
作者简介: 周询(1990-),男,博士研究生,主要从事植被遥感和影像分类方面的研究。Email: ynzx125@qq.com
引用本文:   
周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法[J]. 国土资源遥感, 2018, 30(4): 68-73.
Xun ZHOU, Yuebin WANG, Suhong LIU, Peixin YU, Xikai WANG. A machine learning algorithm for automatic identification of cultivated land in remote sensing images. Remote Sensing for Land & Resources, 2018, 30(4): 68-73.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.04.11      或      https://www.gtzyyg.com/CN/Y2018/V30/I4/68
Fig.1  耕地自动化识别流程
Fig.2  地物类型及研究区位置
Fig.3  研究区遥感影像
(Pleiades B3(R),B2(G),B1(B)合成)

Fig.4  不同尺度纯净度统计
地物类型 影像窗口子区
耕地
林地
居民地
  Image window subareas of each type
数据集 耕地 林地 居民地 合计
训练/验证数据集A 400 150 22 572
训练/验证数据集B 270 100 15 385
训练/验证数据集C 200 80 11 291
训练/验证数据集D 140 50 7 197
训练/验证数据集E 100 38 5 143
训练/验证数据集F 68 28 4 100
测试数据集 600 250 33 883
  各类型样本容量
Fig.5  样本容量与分类精度关系
图像类型 均值 方差
多波段多图像 0.840 0.031
合成单图像 0.750 0.043
Tab.3  各方案模型分类精度均值和方差
图像类型 耕地 非耕地 总体
多波段多图像 0.962 0.795 0.908
合成单图像 0.950 0.703 0.871
Tab.4  各方案模型识别精度
[1] 曹鑫, 陈学泓, 张委伟 , 等. 全球30 m空间分辨率耕地遥感制图研究[J]. 中国科学(地球科学), 2016,46(11):1426-1435.
Cao X, Chen X H, Zhang W W , et al. Research on global 30 m spatial resolution remote sensing mapping of cultivated land[J]. Scientia Sinica(Terrae), 2016,46(11):1426-1435.
[2] 满卫东, 王宗明, 刘明月 , 等. 1990—2013年东北地区耕地时空变化遥感分析[J]. 农业工程学报, 2016,34(7):1-10.
doi: 10.11975/j.issn.1002-6819.2016.07.001
Man W D, Wang Z M, Liu M Y , et al. Spatio-temporal dynamics analysis of cropland in Northeast China during 1990—2013 based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,34(7):1-10.
[3] Shackelford A K, Davis C H . A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(10):2354-2363.
doi: 10.1109/TGRS.2003.815972
[4] 靳欢欢 . 基于逐像元和面向对象分类方法的分析研究[J].江苏科技信息, 2014(19):38-40.
Jin H H . Analysis and research on the the pixel-based and object oriented classification[J].Jiangsu Science and Technology Information,2014(19):38-40.
[5] 蔡银桥, 毛政元 . 基于多特征对象的高分辨率遥感影像分类方法及其应用[J]. 国土资源遥感, 2007,19(1):77-81.doi: 10.6046/gtzyyg.2007.01.17.
Cai Y Q, Mao Z Y . A method for classification of high resolution remotely sensed images based on multi-feature objects and its application[J]. Remote Sensing for Land and Resources, 2007,19(1):77-81.doi: 10.6046/gtzyyg.2007.01.17.
[6] 朱述龙, 张占睦 . 遥感图像获取与分析[M]. 北京: 科学出版社, 2000.
Zhu S L, Zhang Z M. Remote Sensing Image Acquisition and Analysis[M]. Beijing: Science Press, 2000.
[7] 别强, 何磊, 赵传燕 . 基于影像融合和面向对象技术的植被信息提取研究[J]. 遥感技术与应用, 2014,29(1):164-171.
doi: 10.11873/j.issn.1004-0323.2014.1.0164
Bie Q, He L, Zhao C Y . Study on vegetation information extraction based on object-oriented image analysis[J]. Remote Sensing Technology and Application, 2014,29(J):164-171.
[8] 徐世武, 杨双, 孙飞 , 等. 面向对象的高分辨率影像单值分类耕地提取方法研究[J].测绘通报, 2014(10):78-81.
Xu S W, Yang S, Sun F , et al. Method research on cultivated land extraction based on object one-class classification of high-spatial-resolution images[J].Bulletin of Surveying and Mapping,2014(10):78-81.
[9] Hay G J, Marceau D J, Dubé P , et al. A multiscale framework for landscape analysis:Object-specific analysis and upscaling[J]. Landscape Ecology, 2001,16(6):471-490.
doi: 10.1023/A:1013101931793
[10] 周春艳 . 面向对象的高分辨率遥感影像信息提取技术[D]. 青岛:山东科技大学, 2006.
Zhou C Y . Object-oriented Information Extraction Technology of High Resolution Remote Sensing Image[D]. Qingdao:Shandong University of Science and Technology, 2006.
[11] 刘志刚, 史文中, 李德仁 , 等. 一种基于支撑向量机的遥感影像不完全监督分类新方法[J]. 遥感学报, 2005,9(4):363-373.
Liu Z G, Shi W Z, Li D R , et al. Partially supervised classification of remotely sensed imagery using support vector machines[J]. Journal of Remote Sensing, 2005,9(4):363-373.
[12] 吕书强, 田巨慧, 杜磊 , 等. 加权纹理特征在高分辨率遥感影像耕地再分类中的应用[J]. 测绘科学, 2009,34(s1):67-69.
Lyu S Q, Tian J H, Du L , et al. Sub-classification of farmland with weighted textural features in high resolution remote sensing images[J]. Science of Surveying and Mapping, 2009,34(s1):67-69.
[13] Thouret J, Kassouk Z, Gupta A , et al. Tracing the evolution of 2010 Merapi volcanic deposits (Indonesia) based on object-oriented classification and analysis of multi-temporal,very high resolution images[J]. Remote Sensing of Environment, 2015,170(47):350-371.
doi: 10.1016/j.rse.2015.09.028
[14] 胡婷 . 遥感图像典型地物特征提取的尺度效应研究[D]. 西安:西北大学, 2010.
Hu T . The Study of Scale Effects in Typical Objects’ Feature Extraction from Remote Sensing Image[D]. Xi’an:Northwest University, 2010.
[15] 朱秀芳, 潘耀忠, 张锦水 , 等. 训练样本对TM尺度小麦种植面积测量精度影响研究(Ⅰ)——训练样本与分类方法间分类精度响应关系研究[J]. 遥感学报, 2007,11(6):826-837.
Zhu X F, Pan Y Z, Zhang J S , et al. The effects of training samples on the wheat planting area measure accuracy in TM scale(Ⅰ):The accuracy response of different classifiers to training samples[J]. Journal of Remote Sensing, 2007,11(6):826-837.
[16] 武鹏飞 . 延怀盆地景观格局动态过程研究[D]. 北京:首都师范大学, 2013.
Wu P F . Research on the Dynamic Process of Landscape Pattern in Yan Huai Basin[D]. Beijing:Capital Normal University, 2013.
[17] 程起敏 . 基于内容的遥感影像库检索关键技术研究[D].北京:中国科学院研究生院( 遥感应用研究所), 2004.
Cheng Q M . Reaserch on Key Technologies for Content-based Retrieval from Remote Sensing Image Database[D].Beijing:Graduate University of Chinese Academy of Sciences ( Institute of Remote Sensing Applications), 2004.
[18] 王跃宾 . 面向机器学习的高分辨率光学遥感影像识别方法[D]. 北京:北京师范大学, 2016.
Wang Y B . High Spatial Rseolution Remote Sensing Images Recognition by Means of Machine Learning[D]. Beijing:Beijing Normal University, 2016.
[19] Lowe D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
[20] Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification [C]//IEEE Conference on Computer Vision and Pattern Recognition.Miami:Cvpr, 2009: 1794-1801.
[21] Bazi Y, Melgani F . Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11):3374-3385.
doi: 10.1109/TGRS.2006.880628
[1] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[2] 俞乐, 曹凯, 吴飏, 张登荣. 基于影像交叉学习的CBERS CCD波段模拟[J]. 国土资源遥感, 2011, 23(3): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发