Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 154-162    DOI: 10.6046/gtzyyg.2020.04.20
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SAR时间序列的建设用地扩展监测——以常州市新北区为例
孙超1,2(), 陈振杰1,2(), 王贝贝1,2
1.南京大学地理与海洋科学学院,南京 210023
2.卫星测绘技术与应用国家测绘地理信息局重点实验室,南京 210023
Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou
SUN Chao1,2(), CHEN Zhenjie1,2(), WANG Beibei1,2
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
2. Key Laboratory for Satellite Mapping Technology and Applications of National Administration of Surveying, Mapping and Geoinformation, Nanjing 210023, China
全文: PDF(6059 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着城市化进程的不断加快,城市范围不断扩展,快速、准确掌握建设用地的变化对于城市的可持续发展至关重要。合成孔径雷达(synthetic aperture Radar,SAR)影像由于不受天气影响可以及时获取对地观测影像,使得基于SAR时间序列的建设用地扩展监测成为可能。SAR时间序列在发生建设用地扩展过程中存在2种时间序列形态结构,本文命名为“Z”形结构和“V”形结构,针对以往研究中只考虑“Z”形结构未考虑“V”形结构的情况,本研究提出一种基于时间序列自适应分段的建设用地扩展监测方法。对原始时间序列进行自适应分段,使用分段平均值作为特征值,最后使用决策树提取建设用地扩展区域。经验证,方法的正确率为89.60%,完整率为92.73%。研究表明: 本文提出的方法能有效地监测建设用地扩展,相对于动态时间弯曲(dynamic time warping,DTW)方法,正确率提高1.80百分点,完整率提高1.27百分点; 常州市新北区在2015—2019年间,建设用地共增加557.96 hm2,主要扩展方向为南和东南方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙超
陈振杰
王贝贝
关键词 建设用地扩展SAR时间序列Sentinel-1A时间序列分割序列形态结构    
Abstract

With the acceleration of urbanization process, the size of the city is growing, and hence it is of great importance to grasp the change of construction land quickly and accurately for the sustainable development of cities. Because SAR images are not affected by the weather, it is possible to use SAR time series to study the expansion of construction land. There are two kinds of time series structures in SAR, which are named “Z” structure and “V” structure in this paper. In view of the previous studies that only consider the “Z” structure but not the “V” structure, this study proposes a construction land extension method based on time series adaptive segmentation. The original time series is segmented in an adaptive manner, the average value of the segments is used as the characteristic value, and the extended area of construction land is extracted by the decision tree. The accuracy and completeness of the method are 89.60% and 92.73% respectively. The results are as follows: ① The method proposed in this paper can effectively monitor the expansion of construction land. Compared with that of the dynamic time warping(DTW) method, the accuracy is increased by 1.80 percentage points and the integrity rate is increased by 1.27 percentage points. ② From 2015 to 2019, construction land in Xinbei District of Changzhou increased by 557.96 hectares, mainly in the south and the southeast.

Key wordsconstruction land expansion    SAR time series    Sentinel-1A    time series segment    sequential morphological structure
收稿日期: 2019-12-10      出版日期: 2020-12-23
:  TP79  
基金资助:国家重点研发计划项目“国土资源与生态环境安全监测技术集成平台”(2017YFB0504205);国家自然科学基金面上项目“基于遥感影像序列的土地利用变化模式识别方法研究”(41571378)
通讯作者: 陈振杰
作者简介: 孙 超(1995-),男,硕士研究生,研究方向为遥感影像时间序列处理与分析。Email:18256021764@163.com
引用本文:   
孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.20      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/154
Fig.1  研究区范围示意图
年份 升降轨 极化方式 获取时间 影像数量/个
2015年 A VV 2015/07/01—2015/12/16 7
2016年 A VV 2016/01/09—2016/12/22 18
2017年 A VV 2017/01/03—2017/12/29 30
2018年 A VV 2018/01/10—2018/12/24 30
2019年 A VV 2019/01/05—2019/07/04 17
Tab.1  数据列表
Fig.2  算法流程
Fig.3  极值点提取结果
Fig.4  距离度量方式
Fig.5-1  重要点提取过程
Fig.5-2  重要点提取过程
Fig.6  时间序列分段
Fig.7  时间序列特征值
Fig.8  样本选择以及决策树构建
Fig.9  变化检测结果
Fig.10  DTW方法检测结果
方法 “Z”形结构数目 “V”形结构数目 合计
本文方法 9 230 4 719 13 949
DTW方法 9 379 2 546 11 925
Tab.2  时间序列结构数目对比
方法 正确/个 错误/个 漏分/个 正确率/% 完整率/%
本文方法 445 55 20 89.60 92.73
DTW方法 439 61 41 87.80 91.46
Tab.3  DTW与本文方法精度对比
土地利
用类型
建设用地 合计
2015年 2016年 2017年 2018年 2019年
耕地 16.89 107.05 207.99 209.55 11.43 552.91
水体 0.62 1.42 1.69 1.27 0.04 5.05
合计 17.52 108.47 209.68 210.82 11.47 557.96
Tab.4  建设用地历年变化转移矩阵
Fig.11  建设用地扩展
[1] Cui X G, Fang C L, Liu H M, et al. Assessing sustainability of urbanization by a coordinated development index for an urbanization-resources-environment complex system:A case study of Jing-Jin-Ji region,China[J]. Ecological Indicators, 2019,96:383-391.
doi: 10.1016/j.ecolind.2018.09.009
[2] Savage A M, Hackett B, Guenard B, et al. Fine-scale heterogeneity across Manhattan’s urban habitat mosaic is associated with variation in ant composition and richness[J]. Insect Conservation and Diversity, 2015,8(3):216-228.
doi: 10.1111/icad.2015.8.issue-3
[3] Fang C L, Liu H M, Li G D, et al. Estimating the impact of urbanization on air quality in China using spatial regression models[J]. Sustainability, 2015,7(11):15570-15592.
doi: 10.3390/su71115570
[4] Feng T T, Zhao J Q. Review and comparison:Building extraction methods using high-resolution images[C]// Proceedings of the 2009 Second International Symposium on Information Science and Engineering. IEEE, 2009.
[5] Soh M B C. Crime and urbanization:Revisited Malaysian case[J]. Procedia-Social and Behavioral Sciences, 2012,42:291-299.
doi: 10.1016/j.sbspro.2012.04.193
[6] Wang B, Chen Z, Zhu A, et al. Multi-level classification based on trajectory features of time series for monitoring impervious surface expansions[J]. Remote Sensing, 2019,11(6):640.
[7] 刘警鉴, 李洪忠, 华璀, 等. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020,32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
Liu J J, Li H Z, Hua C, et al. Extration of early paddy rice area in Lingao County based on Sentinel-1A data[J]. Remote Sensing for Land and Resources, 2020,32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
[8] 王世新, 田野, 周艺, 等. 基于后向散射模型的多极化SAR影像建筑物高度提取[J]. 国土资源遥感, 2017,29(2):37-45.doi: 10.6046/gtzyyg.2017.02.06.
Wang S X, Tian Y, Zhou Y, et al. Building heigh extration from multi-polarization SAR imagery based on backscattering model[J]. Remote Sensing for Land and Resources, 2017,29(2):37-45.doi: 10.6046/gtzyyg.2017.02.06.
[9] Ban Y, Yousif O A. Multitemporal spaceborne SAR data for urban change detection in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(4):1087-1094.
[10] Yousif O, Ban Y. Improving urban change detection from multitemporal SAR images using PCA-NLM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):2032-2041.
doi: 10.1109/TGRS.2013.2245900
[11] 易凤佳, 李仁东, 常变蓉, 等. 长株潭地区建设用地扩张遥感时空特征分析[J]. 国土资源遥感, 2015,27(2):160-166.doi: 10.6046/gtzyyg.2015.02.25.
doi: 10.6046/gtzyyg.2015.02.25
Yi F J, Li R D, Chang B R, et al. Spatial-temporal features of construction land expansion in Changzhutan (Changsha-Zhuzhou-Xiangtan) area based on remote sensing[J]. Remote Sensing for Land and Resources, 2015,27(2):160-166.doi: 10.6046/gtzyyg.2015.02.25.
[12] 郭晶鹏, 赵映慧, 谌慧倩, 等. 黑龙江工业城市建设用地时空扩张遥感监测[J]. 国土资源遥感, 2018,30(3):204-212. doi: 10.6046/gtzyyg.2018.03.28.
Guo J P, Zhao Y H, Chen H Q, et al. Remote sensing monitoring for temporal and spatial expansion of construction land of industrial cities in Heilongjiang[J]. Remote Sensing for Land and Resources, 2018,30(3):204-212.doi: 10.6046/gtzyyg.2018.03.28.
[13] Qi Z X, Yeh A G-O, Li X, et al. Monthly short-term detection of land development using RADARSAT-2 polarimetric SAR imagery[J]. Remote Sensing of Environment, 2015,164:179-196.
doi: 10.1016/j.rse.2015.04.018
[14] Walter V. Object-based classification of remote sensing data for change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004,58(3-4):225-38.
doi: 10.1016/j.isprsjprs.2003.09.007
[15] Im J, Jensen J R. A change detection model based on neighborhood correlation image analysis and decision tree classification[J]. Remote Sensing of Environment, 2005,99(3):326-340.
doi: 10.1016/j.rse.2005.09.008
[16] Wang W, Chen Z, Li X, et al. Detecting spatio-temporal and typological changes in land use from Landsat image time series[J]. Journal of Applied Remote Sensing, 2017,11(3):035006.
doi: 10.1117/1.JRS.11.035006
[17] Wang Y F, Zhao F F, Cheng L, et al. Framework for monitoring the conversion of cultivated land to construction land using SAR image time series[J]. Remote Sensing Letters, 2015,6(10):794-803.
doi: 10.1080/2150704X.2015.1081304
[18] Li S, Wang Y F, Chen P P, et al. Spatiotemporal fuzzy clustering strategy for urban expansion monitoring based on time series of pixel-level optical and SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(5):1769-1779.
doi: 10.1109/JSTARS.2017.2657607
[19] Feng H, Zhang L, Liao M. Building change detection using coherent and incoherent features from multitemporal SAR images[C]// Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2019.
[20] 车美琴, 阿里木·赛买提, 杜培军, 等. 利用旋转不变特征提取全极化SAR影像人工地物[J]. 遥感学报, 2016,20(2):303-314.
Che M Q, Samat A, Du P J, et al. Urban man-made target extraction from Quad-PolSAR imagery with roll invariant parameters[J]. Journal of Remote Sensing, 2016,20(2):303-314.
[21] 周大镯, 李敏强. 基于序列重要点的时间序列分割[J]. 计算机工程, 2008,34(23):14-16.
Zhou D Z, Li M Q. Time series segmentation based on series importance point[J]. Computer Engineering, 2008,34(23):14-16.
[1] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[2] 刘警鉴, 李洪忠, 华璀, 孙毓蔓, 陈劲松, 韩宇. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1): 191-199.
[3] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[4] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
[5] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发