Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 55-63    DOI: 10.6046/zrzyyg.2020341
  地面沉降监测专栏 本期目录 | 过刊浏览 | 高级检索 |
Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测
史珉1,2,3,4(), 宫辉力1,2,3,4, 陈蓓蓓1,2,3,4, 高明亮1,2,3,4, 张舜康1,2,3,4
1.首都师范大学地面沉降机理与防控教育部重点实验室,北京 100048
2.首都师范大学水资源安全北京实验室,北京 100048
3.首都师范大学北京市城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
4.首都师范大学三维信息获取与应用教育部重点实验室,北京 100048
Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data
SHI Min1,2,3,4(), GONG Huili1,2,3,4, CHEN Beibei1,2,3,4, GAO Mingliang1,2,3,4, ZHANG Shunkang1,2,3,4
1. Key Laboratory of Mechanism, Prevention and Mitigation of Land Subsidence, Capital Normal University, Beijing 100048, China
2. Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China
3. Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling, Capital Normal University, Beijing 100048, China
4. Key Laboratory of 3D Information Acquisition and Application, Capital Normal University, Beijing 100048, China
全文: PDF(5718 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

京津冀地区是我国地面沉降发展最迅速,影响面积最大的地区。地面沉降已成为京津冀协同发展中不容忽视的地质问题。文章利用多时相合成孔径雷达干涉测量(multi-temporal interferometric synthetic aperture Radar,MT-InSAR)技术对2016年1月—2018年10月覆盖京津冀地区的多轨Sentinel-1A数据进行处理,经水准数据验证和相邻轨道数据结果交叉验证后,对多轨SAR数据结果进行融合获取了京津冀平原2016—2018年间的地面沉降结果。InSAR监测结果表明,监测时段内京津冀平原最大沉降速率达164 mm/a,研究区内地面沉降分布广泛,且空间分布不均。对京津冀地区地面沉降时空变化特征进行分析发现,2016—2018年间唐山—秦皇岛地区地面沉降呈不断加剧趋势; 其余地区地面沉降发展较为稳定。研究表明了InSAR技术在大区域地面沉降监测中的可靠性,研究结果为区域沉降防治提供重要依据,为京津冀特大城市群建设提供科学保障。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史珉
宫辉力
陈蓓蓓
高明亮
张舜康
关键词 地面沉降京津冀平原区InSARSentinel-1A    
Abstract

The land subsidence in the Beijing-Tianjin-Hebei (BTH) region has developed the most rapidly and affects the largest area in China and it has become an unnegligible geological problem in the coordinated development of the BTH region. In this study, the multi-track Sentinel-1A data from January 2016 to October 2018 that cover the whole BTH plain was processed using the multi-temporal InSAR (MT-InSAR) technique. After the verification using leveling data and the cross-validation using the data from adjacent tracks, the land subsidence in the BTH region during 2016—2018 were obtained by integrating multi-track SAR data results. The InSAR monitoring results show that the maximum subsidence rate in the BTH region reached 164 mm/a and the land subsidence was widely and unevenly distributed in space in the study area during the monitoring period. According to the analysis of the spatial-temporal change characteristics of the land subsidence in the BTH region, the land subsidence showed an increasing trend in the Tangshan-Qinhuangdao area but stably developed in the remaining areas in the BTH region during 2016—2018. This paper demonstrates that the reliability of the InSAR technique in the monitoring of land subsidence in large regions. The results of this study will provide an important basis for the prevention and mitigation of regional subsidence and will provide a scientific guarantee for the construction of the BTH urban agglomeration.

Key wordsland subsidence    Beijing-Tianjin-Hebei plain    InSAR    Sentinel-1A
收稿日期: 2020-10-28      出版日期: 2021-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金重点项目“京津冀典型区地下空间演化与地面沉降响应机理研究”(41930109/D010702);国家自然科学基金面上项目“南水进京背景下地面沉降演化机理”(41771455/D010702);北京卓越青年科学家项目(BJJWZYJH01201910028032);北京市优秀人才青年拔尖项目和北京市自然基金面上项目“新水情背景下京津高铁沿线地面沉降演化机制及调控方法”(8182013)
作者简介: 史 珉(1989-),女,博士研究生,主要从事地面沉降演化机理方面的研究。Email: Minshi_cnu@126.com
引用本文:   
史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020341      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/55
Fig.1  研究区概况示意图
卫星 Track 数量
/幅
时间
范围
升(降)
极化
方式
成像
模式
Sentinel-
1A
40 165 20160107—20181128 升轨 VV IW
142 141 20160114—20181018
69 98 20160109—20181001
Tab.1  Sentinel-1A影像信息
Fig.2  2016—2018年京津冀平原区PS-InSAR地表形变速率
Fig.3  2016—2018年各年度InSAR平均形变速率
Fig.4  剖面时间序列InSAR形变速率结果
Fig.5  研究区内沉降特征点对应时序特征
Fig.6  InSAR结果与水准测量结果精度验证
Sentinel-
1A
均方根误差/
(mm·a-1)
最大误差/
(mm·a-1)
最小误差/
(mm·a-1)
R
Track 142 5.5 11.6 0.2 0.97
Track 69 7.2 13.5 1.0 0.98
Tab.2  InSAR所得形变信息与水准测量结果比对
Fig.7  多轨SAR影像形变速率交叉验证结果
[1] 郭海朋, 白晋斌, 张有全, 等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 2017,44(6):1115-1127.
Guo H P, Bai J B, Zhang Y Q, et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 2017,44(6):1115-1127.
[2] 吕潇文, 宋利, 邵兴, 等. 天津市地面沉降监测技术应用及发展建议[J]. 上海国土资源, 2017,38(2):26-30.
Lyu X W, Song L, Shao X, et al. The suggestion and application of land subsidence monitoring in Tianjin[J]. Shanghai Land and Resources, 2017,38(2):26-30.
[3] 李海君, 张耀文, 孟健, 等. 华北平原地面沉降新构造运动影响特征[J]. 能源与环保, 2017,39(6):57-62.
Li H J, Zhang Y W, Meng J, et al. Characteristics on land subsidence in North China Plain within effect of neotectonic movement[J]. China Energy and Environmental Protection, 2017,39(6):57-62.
[4] 杨艳. 京津冀区域地面沉降灾害防治思考[J]. 城市地质, 2015(1):1-7.
Yang Y. Land subsidence disaster prevention and cure in Beijing-Tianjin-Hebei area,China[J]. Urban Geology, 2015(1):1-7.
[5] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017,46(10):1717-1733.
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1717-1733.
[6] 林珲, 马培峰, 王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 2017,46(10):1421-1433.
Lin H, Ma P F, Wang W X. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture Radar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1421-1433.
[7] Hu B, Wang H S, Sun Y L, et al. Long-term land subsidence monitoring of Beijing (China) using the small baseline subset (SBAS) technique[J]. Remote Sensing, 2014,6(5):3648-3661.
doi: 10.3390/rs6053648
[8] Du Z Y, Ge L L, Ng A, et al. Mapping land subsidence over the eastern Beijing City using satellite Radar interferometry[J]. International Journal of Digital Earth, 2018,11(5):504-519.
doi: 10.1080/17538947.2017.1336651
[9] Gao M L, Gong H L, Chen B B, et al. Regional land subsidence analysis in eastern Beijing Plain by InSAR time series and wavelet transforms[J]. Remote Sensing, 2018,10(3):365.
doi: 10.3390/rs10030365
[10] Hu L Y, Dai K R, Xing C Q, et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,82:101886.
doi: 10.1016/j.jag.2019.05.019
[11] Lyu M Y, Ke Y H, Guo L, et al. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite Radar interferometry[J]. GIScience Remote Sensing, 2019,57:140-156.
doi: 10.1080/15481603.2019.1676973
[12] 雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS-InSAR技术的天津地面沉降研究[J]. 水文地质工程地质, 2013,40(6):106-111.
Lei K C, Chen B B, Gong H L, et al. Detection of land subsidence in Tianjin based on PS-InSAR technology[J]. Hydrogeology and Engineering Geology, 2013,40(6):106-111.
[13] Luo Q L, Perissin D, Zhang Y Z, et al. L-and X-band multi-temporal InSAR analysis of Tianjin subsidence[J]. Remote Sensing, 2014,6(9):7933-7951.
doi: 10.3390/rs6097933
[14] Liu P, Li Q Q, Li Z H, et al. Anatomy of subsidence in Tianjin from time series InSAR[J]. Remote Sensing, 2016,8(3):266.
doi: 10.3390/rs8030266
[15] Zhang T X, Shen W B, Wu W H, et al. Recent surface deformation in the Tianjin area revealed by Sentinel-1A Data[J]. Remote Sensing, 2019,11(2):130.
doi: 10.3390/rs11020130
[16] 张玲, 葛大庆, 郭小方, 等. 近十年来沧州地区地面沉降演化状况[J]. 上海国土资源, 2014,35(4):72-76,80.
Zhang L, Ge D Q, Guo X F, et al. Land subsidence in Cangzhou over the last decade based on interferometric time series analysis[J]. Shanghai Land and Rescources, 2014,35(4):72-76,80.
[17] Liu X X, Wang Y J, Yan S Y. Ground deformation associated with exploitation of deep groundwater in Cangzhou City measured by multi-sensor synthetic aperture Radar images[J]. Environmental Earth Sciences, 2017,76(1):6.
doi: 10.1007/s12665-016-6311-0
[18] 周洪月, 汪云甲, 闫世勇, 等. 沧州地区地面沉降现状Sentinel-1A/B时序InSAR监测与分析[J]. 测绘通报, 2017(7):89-93.
Zhou H Y, Wang Y J, Yan S Y, et al. Land subsidence monitoring and analyzing of Cangzhou area Sentinel-1A/B based time series InSAR[J]. Bulletin of Surveying and Mapping, 2017(7):89-93.
[19] 周旭, 许才军, 温扬茂. 利用时序InSAR技术分析北京及河北廊坊地面沉降[J]. 测绘科学, 2017,42(7):89-93.
Zhou X, Xu C J, Wen Y M. Land subsidence monitoring of Beijing and Langfang of Hebei Province by time series InSAR[J]. Science of Surveying and Mapping, 2017,42(7):89-93.
[20] 李海君, 张耀文, 杨月巧, 等. 廊坊北三县地区地面沉降时空分布特征与成因分析[J]. 科学技术与工程, 2018,18(11):23-30.
Li H J, Zhang Y W, Yang Y Q, et al. Spatial-temporal distribution characteristics and causation analysis of land subsidence in three northern counties area of Langfang[J]. Science Technology and Engineering, 2018,18(11):23-30.
[21] 马震. 京津冀地区国土资源环境地质条件分析[J]. 中国地质, 2017,44(5):857-873.
Ma Z. The environmental geological conditions of land resources in the Beijing-Tianjin-Hebei region[J]. Geology in China, 2017,44(5):857-873.
[22] 郭海朋, 李文鹏, 王丽亚, 等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质, 2021,48(3):162-171.
Guo H P, Li W P, Wang L Y, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology and Engineering Geology, 2021,48(3):162-171.
[23] 白泽朝. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报, 2017,34(3):283-288.
Bai Z C. Subsidence monitoring of Tianjin using PSInSAR technique with Sentinel-1A[J]. Journal of Geomatics Science and Technology, 2017,34(3):283-288.
[24] Perissin D, Wang Z, Lin H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed persistent scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,73:58-67.
doi: 10.1016/j.isprsjprs.2012.07.002
[25] 郭良迁, 薄万举, 杨国华. 华北地区断裂带的现代形变特征[J]. 大地测量与地球动力学, 2003,23(2):29-36.
Guo L Q, Bo W J, Yang G H. Characteristics of current deformation of fault belts in North China[J]. Journal of Geodesy and Geodynamics, 2003,23(2):29-36.
[26] 张进才, 褚立峰, 肖震, 等. 河北平原地面沉降调查与监测主要进展及成果[J]. 中国地质调查, 2014,1(2):45-50.
Zhang J C, Chu L F, Xiao Z, et al. Main progress and achievements of land subsidence survey and monitoring in Hebei Plain[J]. Geological Survey of China, 2014,1(2):45-50.
[27] 郑玉萍, 韩晔, 王巍, 等. 自然因素对天津市地面沉降影响分析[J]. 中国煤炭地质, 2014(4):36-40.
Zheng Y P, Han Y, Wang W, et al. Analysis of impacts on surface from natural factors in Tianjin Municipality[J]. Coal Geology of China, 2014(4):36-40.
[28] 何庆成, 刘文波, 李志明. 华北平原地面沉降调查与监测[J]. 高校地质学报, 2006,12(2):195-209.
He Q C, Liu W B, Li Z M. Land subsidence survey and monitoring in the North China Plain[J]. Geological Journal of China Universities, 2006,12(2):195-209.
[29] Ge D, Zhang L, Wang Y, et al. Merging multi-track PSI result for land subsidence mapping over very extended area[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium,IEEE, 2010.
[30] 孙赫. 基于PS-InSAR技术的大范围多轨道数据地面沉降监测研究[D]. 西安:长安大学学位论文, 2015.
Sun H. Monitoring large area subsidence with PS-InSAR technique based on multi-track data[D]. Xi'an:Chang'an University, 2015.
[31] 熊思婷, 曾琪明, 焦健, 等. 邻轨PS-InSAR地面沉降结果拼接处理方法与实验[J]. 地球信息科学学报, 2014(5):797-805.
doi: 10.3724/SP.J.1047.2014.00797
Xiong S T, Zeng Q M, Jiao J, et al. Research on connecting PS-InSAR from adjacent tracks for land subsidence monitoring[J]. Journal of Geo-Information Science, 2014(5):797-805.
[32] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
Zhang Y H, Wu H A, Kang Y H. Ground subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.
[33] 张学东, 葛大庆, 肖斌, 等. 多轨道集成PS-InSAR监测高速公路沿线地面沉降研究——以京沪高速公路(北京—河北)为例[J]. 测绘通报, 2014(10):67-69.
Zhang X D, Ge D Q, Xiao B, et al. Study on multi-track integration PS-InSAR monitoring the land:Taking Jinghu highway (Beijing-Hebei) as an example[J]. Bulletin of Surveying and Mapping, 2014(10):67-69.
[1] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[2] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[3] 姜德才, 郑向向, 王宁, 肖春蕾, 朱振洲. 时序InSAR技术在珠三角地区地质灾害隐患识别中的应用[J]. 自然资源遥感, 2023, 35(3): 292-301.
[4] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
[5] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[6] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[7] 何彬方, 姚筠, 冯妍, 刘惠敏, 戴娟. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
[8] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[9] 于文, 宫辉力, 陈蓓蓓, 周超凡. 北京东部平原区地面沉降时空演化特征及预测[J]. 自然资源遥感, 2022, 34(4): 183-193.
[10] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
[11] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[12] 张志华, 胡长涛, 张镇, 杨树文. 基于PS-InSAR上海地区地表沉降监测与分析[J]. 自然资源遥感, 2022, 34(3): 106-111.
[13] 李柱, 范洪冬, 高彦涛, 许耀宗. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3): 138-145.
[14] 韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2): 251-260.
[15] 杨显华, 魏鹏, 吕军, 韩磊, 石浩林, 刘智. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2): 162-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发