Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 72-79    DOI: 10.6046/zrzyyg.2021148
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于叶片空间分布的植被遥感适宜尺度方法
吴浩波(), 吴梦彤, 杨斯棋, 范闻捷(), 任华忠
北京大学遥感与地理信息系统研究所,北京 100871
A method for determining suitable scales for vegetation remote sensing based on the spatial distribution of leaves
WU Haobo(), WU Mengtong, YANG Siqi, FAN Wenjie(), REN Huazhong
Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China
全文: PDF(2823 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高空间分辨率遥感为植被定量遥感提供了新的数据源,同时也带来了新的挑战和机遇。传统基于辐射传输理论的叶面积指数遥感方法,主要的理论依据是比尔朗伯 (Beer-Lambert)定律,其前提是叶片在像元内的分布服从泊松分布,本研究探究的是连续植被叶片在像元中的空间分布服从泊松分布的情况下的适宜尺度问题。选择封垄小麦为研究对象,以小麦冠层为例,利用植被三维真实模拟模型LESS (LargE-Scale remote sensing data and image Simulation framework,LESS)模拟不同分辨率的连续小麦冠层遥感影像; 在此基础上,利用三维模拟的叶片冠层分析小麦连续冠层叶片服从泊松分布的适宜尺度,构建了连续植被叶面积指数(leaf area index,LAI)反演适宜尺度的计算方法。结果表明适宜尺度受到LAI数值和聚集效应的影响。选择河南省漯河市为主要研究区,利用无人机高光谱飞行数据和LAI反演结果验证了该方法的可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴浩波
吴梦彤
杨斯棋
范闻捷
任华忠
关键词 高空间分辨率LESS适宜尺度    
Abstract

High spatial resolution remote sensing data serve as a new data source for quantitative remote sensing of vegetation, bringing in both new challenges and opportunities. The traditional leaf area index (LAI) inversion method based on the radiative transfer theory takes Beer-Lambert Law as the primary theoretical basis. The prerequisite for its application is that the leaf distribution in pixels follows a Poisson distribution. This study explored the appropriate scale in the case that the spatial distribution of continuous vegetation leaves in pixels follows a Poisson distribution. Focusing on the wheat canopy, this study used the LESS (LargE-Scale remote sensing data and image Simulation framework) software to simulate the remote sensing images of continuous wheat canopy. Based on this, this study analyzed the appropriate scale on which continuous wheat canopy leaves follow a Poisson distribution through the three-dimensional simulation of leaf canopy. Moreover, this study constructed a method for calculating the appropriate scale of the LAI inversion of continuous vegetation. The results show that the appropriate scale is influenced by the LAI value and the aggregation effect. The UAV hyperspectral data and the LAI inversion results from Luohe City, Henan Province validated the feasibility of this method.

Key wordshigh spatial resolution    LESS    appropriate scale
收稿日期: 2021-05-11      出版日期: 2022-06-20
基金资助:国家重点基金项目“高分遥感植被子冠层精细建模与反演研究”(42130104);国家自然科学基金项目“逐日植被光合有效辐射吸收比率遥感反演算法”(41971301)
通讯作者: 范闻捷
作者简介: 吴浩波(1993-),男,硕士研究生,主要从事植被辐射传输理论研究。Email: wuhb@pku.edu.cn
引用本文:   
吴浩波, 吴梦彤, 杨斯棋, 范闻捷, 任华忠. 基于叶片空间分布的植被遥感适宜尺度方法[J]. 自然资源遥感, 2022, 34(2): 72-79.
WU Haobo, WU Mengtong, YANG Siqi, FAN Wenjie, REN Huazhong. A method for determining suitable scales for vegetation remote sensing based on the spatial distribution of leaves. Remote Sensing for Natural Resources, 2022, 34(2): 72-79.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021148      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/72
参数
投影方式 Orthographic
光子数量/像素 64
模拟波长/ nm 600,900
观测天顶角/(°) 0
观测方位角/(°) 180
传感器高度/ m 3 000
场景长度/ m 100
场景宽度/ m 100
地表反射类型 朗伯反射
Tab.1  主要场景参数表
Fig.1  抽穗期小麦和叶片模型
Fig.2  模拟场景小麦分布示意图
Fig.3  漯河市实验地示意图
Fig.4  无人机和成像光谱仪
Fig.5  LAI为4.18的场景叶片空间分布统计直方图示意图(分辨率为0.1 m)
Fig.6  2 m分辨率LAI分布统计直方图
LAI真值xi f(X=xi) 频数 期望频率 χ2
0 0.015 3 32 38.25 1.021 2
1 0.064 0 163 160.00 0.056 2
2 0.133 7 336 334.40 0.007 6
3 0.186 3 468 465.93 0.009 1
4 0.194 7 497 486.90 0.209 6
5 0.162 8 395 407.05 0.356 5
6 0.113 4 289 283.58 0.103 7
7 0.067 7 177 169.34 0.346 9
合计 1 2 500 2 498 4.135 3
Tab.2  2 m分辨率LAI分布拟合优度计算过程
Fig.7  不同场景欧氏距离相似性曲线
Fig.8  无人机高光谱RGB影像及LAI反演结果
Fig.9  真实影像相似度曲线
[1] Ganopolski A, Kubatzki C, Claussen M, et al. The influence of Vegetation-Atmosphere-Ocean interaction on climate during the Mid-Holocene[J]. Science, 1998, 280(5371):1916-1919.
pmid: 9632385
[2] Bonan G B, Pollard D, Thompson S L. Influence of subgrid-scale heterogeneity in leaf area index,stomatal resistance,and soil moisture on grid-scale land-atmosphere interactions[J]. Journal of Climate, 1993, 6(10):1882-1897.
doi: 10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO;2
[3] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 161-173
doi: 10.1016/0034-4257(91)90009-U
[4] Bonan G B. Land-Atmosphere interactions for climate system Models: Coupling biophysical,biogeochemical,and ecosystem dynamical processes[J]. Remote Sensing of Environment, 1995, 51(1):57-73
doi: 10.1016/0034-4257(94)00065-U
[5] Tang H, Brolly M, Zhao F, et al. Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing:A case study in Sierra National Forest,CA[J]. Remote Sensing of Environment, 2014, 143:131-141.
doi: 10.1016/j.rse.2013.12.007
[6] Shi Y, Wang J, Qin J, et al. An upscaling algorithm to obtain the representative ground truth of LAI time series in heterogeneous land surface[J]. Remote Sensing, 2015, 7(10):12887-12908.
doi: 10.3390/rs71012887
[7] José G D, Philip L, Mathias D. Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences[J]. Remote Sensing, 2016, 8(2):1-32.
doi: 10.3390/rs8010001
[8] Lisein J, Bonnet S, Lejeune P, et al. Modélisation de la canopée forestière par photogrammétrie depuis des images acquises par drone[J]. Revue Francaise De Photogrammetrie Et De Teledetection, 2014, 206(206):45-54.
[9] 陶雪涛. 线性模型下多通道遥感图像混合像元分解方法研究[J]. 上海: 复旦大学, 2008, 14:31-41.
Tao X T. Research on the decomposition method of multi-channel remote sensing image mixed pixels under linear model[J]. Shanghai:Fudan University, 2008, 14:31-41.
[10] 胡潭高, 张锦水, 贾斌, 等. 不同分辨率遥感图像混合像元线性分解方法研究[J]. 地理与地理信息科学, 2008, 24(3):20-23.
Hu T G, Zhang J S, Jia B, et al. Research on the linear decomposition method of mixed pixels of remote sensing images with different resolutions[J]. Geography and Geo-Information Science, 2008, 24(3):20-23.
[11] Tian J, Le W, Li X, et al. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 61:22-31.
[12] Kimura K, Yamasaki S. Accurate root length and diameter measurement using NIH Image:Use of Pythagorean distance for diameter estimation[J]. Plant & Soil, 2003, 254(2):305-315.
[13] Li W, Niu Z, Chen H, et al. Characterizing canopy structural complexity for the estimation of maize LAI based on ALS data and UAV stereo images[J]. International Journal of Remote Sensing, 2017, 38(8-10):1-11.
[14] 李小文, 王锦地. 植被光学遥感模型和植被结构参数化[M]. 北京: 科学出版社, 1995,118.
Li X W, Wang J D. Vegetation optical remote sensing model and vegetation structure parameterization[M]. Beijing: Science Press, 1995,118.
[15] 唐凤莉, 刘良云. 冠层特征尺度的定量计算模型与方法[J]. 遥感学报, 2014, 18(6):1182-1188.
Tang F L, Liu L Y. Canopy characteristic scale model and quantitative calculation[J]. Journal of Remote Sensing, 2014, 18(6):1182-1188.
[16] Qi J, Xie D, Yin T, et al. LESS:LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes[J]. Remote Sensing of Environment, 2019, 221:695-706.
doi: 10.1016/j.rse.2018.11.036
[17] 徐玉华, 曾明. 泊松分布性质及应用研究[J]. 长江大学学报, 2006(4):132-133.
Xu Y H, Zeng M. Poisson distribution properties and application research[J]. Journal of Yangtze University, 2006(4):132-133.
[18] Cheung G W, Rensvold R B. Evaluating Goodness-of-Fit indexes for testing measurement invariance[J]. Structural Equation Modeling, 2002, 9(2):233-255.
doi: 10.1207/S15328007SEM0902_5
[19] 罗忠良. 基于案例推理系统中案例检索算法的探索[J]. 计算机工程与应用, 2005, 41(25):230-232.
Luo Z L. Exploration of case retrieval algorithms in case-based reasoning systems[J]. Computer Engineering and Applications, 2005, 41(25):230-232.
[20] Bicheron P. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing of Environment, 1999, 67(3):251-266.
doi: 10.1016/S0034-4257(98)00083-2
[21] Ejegwa P A, Akubo A J, Joshua O M. Intuitionistic fuzzy set and its application in career determination via normalized euclidean distance method[J]. European Scientific Journal, 2014:69-77.
[22] 方杰, 张敏强, 李晓鹏. 中介效应的三类区间估计方法[J]. 心理科学进展, 2011, 19(5):765-774.
Fang J, Zhang M Q, Li X P. Three types of interval estimation methods for mediating effects[J]. Advances in Psychological Science, 2011, 19(5):765-774.
[23] Fan W J, Xu X R. A method for blind separation of components information from mixed pixel[J]. Progress in Natural Science, 2006(16):760-765.
[24] Fan W J, Xu X R, Liu X, et al. Accurate LAI retrieval method based on PROBA/CHRIS data[J]. Hydrology and Earth System Sciences Discussions, 2009, 6(6):7001-7024.
[1] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[2] 张春森, 吴蓉蓉, 李国君, 崔卫红, 冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[3] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[4] 刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4): 112-119.
[5] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[6] 卫宝泉, 索安宁, 李颖, 赵建华. LBV变换在国产ZY-3卫星影像中应用研究探讨[J]. 国土资源遥感, 2019, 31(3): 87-94.
[7] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
[8] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[9] 郑艺, 林懿琼, 周建, 甘伟修, 林广旋, 许方宏, 林光辉. 基于资源三号的雷州半岛红树林种间分类研究[J]. 国土资源遥感, 2019, 31(3): 201-208.
[10] 周阳, 张云生, 陈斯飏, 邹峥嵘, 朱耀晨, 赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
[11] 梁林林, 江利明, 周志伟, 陈玉兴, 孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[12] 吕野, 胡翔云. 利用增量式马尔科夫随机场分割提取高空间分辨率遥感影像道路[J]. 国土资源遥感, 2018, 30(3): 76-82.
[13] 尹峰, 曹丽琴, 梁鹏. 改进的Welsh颜色迁移算法在GF-2图像融合中的应用[J]. 国土资源遥感, 2017, 29(4): 126-131.
[14] 孙娜, 高志强, 王晓晶, 罗志东. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4): 173-178.
[15] 杨青山, 张华. 融合像元形状和光谱信息的高分遥感图像分类新方法[J]. 国土资源遥感, 2016, 28(4): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发