Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 88-96    DOI: 10.6046/zrzyyg.2022223
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多元GMM的机载多光谱LiDAR点云空谱联合分类
王丽英1(), 马旭伟2,3,4, 有泽1, 王世超1, CAMARA Mahamadou1
1.辽宁工程技术大学测绘与地理科学学院,阜新 123000
2.煤炭科学技术研究院有限公司,北京 100013
3.煤矿应急避险技术装备工程研究中心,北京 100013
4.北京市煤矿安全工程技术研究中心,北京 100013
Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM
WANG Liying1(), MA Xuwei2,3,4, YOU Ze1, WANG Shichao1, CAMARA Mahamadou1
1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China
2. CGTEG China Coal Research Institute, Beijing 100013, China
3. Engineering Research Center for Technology Equipment of Emergency Refuge in Coal Mine, Beijing 100013, China
4. Beijing Coal Mine Safety Engineering Technology Research Center, Beijing 100013, China
全文: PDF(3094 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统机载多光谱激光雷达(multispectral light detection and ranging,MS-LiDAR)土地覆盖分类方法空谱信息协同利用能力不足或多类型特征联合利用时特征维数过高的缺陷,提出一种基于多元高斯混合模型(Gaussian mixture model,GMM)的机载MS-LiDAR点云空谱联合分割算法。该算法首先对原始多波段独立点云进行辐射校正、异常剔除及融合,形成同时表达空间位置及其对应多波段光谱信息的多光谱点云; 然后,提取各激光点的多光谱、高程等特征构建空谱特征矢量,并通过特征标准化及离散化消除不同类型特征间的单位和尺度差异; 再次,构建多元GMM建模目标在空谱特征空间呈现的多峰分布,获取激光点属于各类目标的响应度并按照最大响应度原则确定类属; 最后,设计3D多数投票法优化分割结果。实验基于实测的Optech Titan MS-LiDAR数据验证提出算法的有效性和可行性。实验结果表明: 联合多波段强度特征及高程特征的多元GMM的分割总体精度可达93.57%,Kappa系数可达0.912,仅联合四维特征即可实现MS-LiDAR点云的高精度分割。该项研究可为综合利用MS-LiDAR数据的多光谱及空间信息提供新途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽英
马旭伟
有泽
王世超
CAMARA Mahamadou
关键词 多光谱激光雷达点云分割多元高斯混合模型多峰分布多数投票法空谱联合特征    
Abstract

Conventional land cover classification methods based on airborne multispectral light detection and ranging (MS-LiDAR) data have insufficient capability for the cooperative utilization of spatial-spectral information or too high dimensions of features in the joint utilization of various features. This study proposed a spatial-spectral joint segmentation algorithm for airborne MS-LiDAR point clouds based on the multivariate Gaussian mixture model (GMM). First, radiometric correction, anomaly removal, and data fusion were performed for the original multi-band independent point clouds, forming multispectral point clouds that presented spatial locations and their multi-band spectral information. Then, spatial-spectral feature vectors were constructed using the extracted multispectral and elevation features of laser points. Meanwhile, the unit and scale differences among different types of features were eliminated through feature normalization and discretization. Subsequently, a GMM was built to fit the multimodal distribution of objects in the spatial-spectral feature space. Accordingly, the response levels of laser points to various objects were obtained, and the classification of various objects was determined according to the principle of maximum responsiveness. Finally, a 3D majority voting method was designed to optimize the segmentation results. The effectiveness and feasibility of the proposed algorithm were verified through experiments based on surveyed Optech Titan MS-LiDAR data. The experimental results show that the multivariate GMM combined with multi-band intensity features and elevation features yielded an overall segmentation accuracy of 93.57% and a Kappa coefficient of 0.912. The results also indicate that the high-accuracy segmentation of MS-LiDAR point clouds can be achieved by only combining four-dimensional features. This study provides a new approach for comprehensively utilizing the multispectral and spatial information in MS-LiDAR data.

Key wordsmultispectral light detection and ranging    point cloud segmentation    multivariate Gaussian mixture model    multimodal distribution    majority voting method    spatial-spectral joint feature
收稿日期: 2022-06-01      出版日期: 2023-09-19
ZTFLH:  TP79  
  P237  
基金资助:国家自然科学基金项目“机-车载LiDAR协同的城区建筑精细语义重建关键技术研究”(42201482);“路面病害智能检测与评价方法研究”(62105240)
作者简介: 王丽英(1982-),女,博士,教授,研究方向为激光雷达数据处理及应用。Email: wangliyinglntu@163.com
引用本文:   
王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022223      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/88
Fig.1  Titan多光谱LiDAR点云强度数据顶视图
Fig.2  目标在二维特征空间的概率密度估计
Fig.3  本文算法流程
Fig.4  融合点云顶视图
(波段C1(R),C2(G),C3(B)假彩色合成)
序号 特征组合 总体精度/% Kappa系数
IC1 + z 64.13 0.491
IC2 + z 88.08 0.838
IC3 + z 65.45 0.509
I C 1+ IC2 + z 88.72 0.846
IC2 + IC3 +z 91.53 0.885
IC3 + IC1 +z 65.88 0.515
I C 1+ IC2 + IC3 + z 91.36 0.882
IC1 + IC2 + IC3 80.81 0.735
Tab.1  不同特征组合下的分割精度对比
指标 特征组合⑤ 特征组合⑦
优化前 优化后 优化前 优化后
总体精度/% 91.53 92.71 91.36 93.57
Kappa系数 0.885 0.901 0.882 0.912
Tab.2  特征组合⑤和⑦分割优化前后精度对比
Fig.5  优化结果及优化前后对比
实验数据 参考数据 合计 用户精度/%
建筑物 道路 树木 草地
建筑物 19 981 37 709 128 20 855 95.81
道路 0 23 623 134 2 264 26 021 90.78
树木 407 145 28 312 2 016 30 880 91.68
草地 24 936 873 39 785 41 618 95.60
合计 20 412 24 741 30 028 44 193 119 374
生产者精度/% 97.89 95.48 94.29 90.03
总体精度: 93.57% Kappa系数: 0.912
Tab.3  本文算法的混淆矩阵
算法参考文献 算法原理 联合特征 总体精度/% Kappa系数
本文算法 多元GMM 多光谱、nDSM 93.57 0.912
Huo等[10] SVM分类 多光谱、伪NDVIs、形态学剖面、多尺度形态学剖面、nDSM 93.28 0.910
Teo等[12] SVM分类 多光谱、NDFIs、曲率、nDSM 93.00 0.911
Zou等[21] 决策树分类 伪NDVI、绿化率、强度、高程、点数、返回数、类别、亮度、面积 91.63 0.895
Fernandez-Diaz等[8] 马氏距离 5个结构波段、2个波段强度 90.22 0.870
Ahokas等[15] 随机森林 多光谱、nDSM、点邻域特征 93.50
Shaker等[18] 对数似然分类 高程、高程变化、强度、强度变化、NDWI、回波数 96.50
Wang等[14] SVM分类 空间位置、多光谱、几何、结构 94.76 0.935
Tab.4  本文算法和其他经典算法的精度对比
[1] Zhou W. An object-based approach for urban land cover classification:Integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):928-931.
doi: 10.1109/LGRS.8859
[2] 张继贤, 林祥国, 梁欣廉. 点云信息提取研究进展和展望[J]. 测绘学报, 2017, 46(10):1460-1469.
doi: 10.11947/j.AGCS.2017.20170345
Zhang J X, Lin X G, Liang X L. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1460-1469.
doi: 10.11947/j.AGCS.2017.20170345
[3] Morsy S, Shaker A, El-Rabbany A. Multispectral LiDAR data for land cover classification of urban areas[J]. Sensors, 2017, 17(5):958.
doi: 10.3390/s17050958
[4] Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2015, 2:113-119.
[5] Zulfiquar K. Performance analysis of multispectial LiDAR in land cover classification[D]. Toronto: Ryerson University, 2017.
[6] Morsy S, Shaker A, El-Rabbany Y A, et al. Airborne multi-spectral LiDAR data for land-cover classification and land/water map-ping using different spectral indexes[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, III-3:217-224.
[7] Chen B, Shi S, Gong W, et al. Multispectral LiDAR point cloud classification:A two-step approach[J]. Remote Sensing, 2017, 9 (4):373.
doi: 10.3390/rs9040373
[8] Fernandez-Diaz J, Carter W, Glennie C, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR[J]. Remote Sensing, 2016, 8(11):936.
doi: 10.3390/rs8110936
[9] 潘锁艳, 管海燕. 机载多光谱LiDAR数据的地物分类方法[J]. 测绘学报, 2018, 47(2):198-207.
doi: 10.11947/j.AGCS.2018.20170512
Pan S Y, Guan H Y. Object classification using airborne multispectral LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):198-207.
doi: 10.11947/j.AGCS.2018.20170512
[10] Huo L Z, Silva C A, Klauberg C, et al. Supervised spatial classification of multispectral LiDAR data in urban areas[J]. PLoS One, 2018, 13(10):e0206185.
doi: 10.1371/journal.pone.0206185
[11] Wang Y, Gu Y. Multispectral LiADR data fusion via multiple kernel learning for remote sensing classification[C]// 2018 9th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).IEEE, 2018:1-6.
[12] Teo T A, Wu H M. Analysis of land cover classification using multi-wavelength LiDAR system[J]. Applied Sciences, 2017, 7(7):663.
doi: 10.3390/app7070663
[13] Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification[C]// IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2017:5264-5267.
[14] Wang Q, Gu Y. A Discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(3):1568-1586.
doi: 10.1109/TGRS.36
[15] Ahokas E, Hyyppä J, Yu X, et al. Towards automatic single-sensor mapping by multispectral airborne laser scanning[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B3:155-162.
[16] 袁鹏飞, 黄荣刚, 胡平波, 等. 基于多光谱LiDAR数据的道路中心线提取[J]. 地球信息科学学报, 2018, 20(4):452-461.
doi: 10.12082/dqxxkx.2018.170634
Yuan P F, Huang R G, Hu P B, et al. Road axis extraction method based on multi-spectral LiDAR data[J]. Journal of Geo-Information Science, 2018, 20(4):452-461.
[17] 曹爽, 潘锁艳, 管海燕. 机载多光谱LiDAR的随机森林地物分类[J]. 测绘通报, 2019(11):79-84.
doi: 10.13474/j.cnki.11-2246.2019.0356
Cao S, Pan S Y, Guan H Y. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 2019(11):79-84.
doi: 10.13474/j.cnki.11-2246.2019.0356
[18] Shaker A, Yan W Y, Larocque P E. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:94-108.
doi: 10.1016/j.isprsjprs.2019.04.005
[19] Bakuła K, Kupidura P, Jełowicki Ł. Testing of land cover classification from multispectral airborne laser scanning data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:161-169.
[20] Miller C I, Thomas J J, Kim A M, et al. Application of image classification techniques to multispectral LiDAR point cloud data[C]// Laser Radar Technology and Applications XXI.International Society for Optics and Photonics, 2016, 9832:98320X.
[21] Zou X L, Zhao G H, Li J, et al. 3D land cover classification based on multispectral LiDAR point clouds[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:741-747.
[22] Unnikrishnan A, Sowmya P S K. Deep AlexNet with reduced number of trainable parameters for satellite image classification[J]. Procedia Computer Science, 2018, 143:931-938.
doi: 10.1016/j.procs.2018.10.342
[23] Zhang C, Sargent I, Pan X, et al. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sensing of Environment, 2018, 261:57-70.
[24] Jiang Y, Li Y, Zhang H. Hyperspectral image classification based on 3-D separable ResNet and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12):1949-1953.
doi: 10.1109/LGRS.8859
[25] Pan S, Guan H, Chen Y, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:241-254.
doi: 10.1016/j.isprsjprs.2020.05.022
[26] Pan S, Guan H, Yu Y, et al. A comparative land-cover classification feature study of learning algorithms:DBM,PCA,and RF using multispectral LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4):1314-1326.
doi: 10.1109/JSTARS.4609443
[27] Yu Y, Liu C, Guan H, et al. Land cover classification of multispectral LiDAR data with an efficient self-attention capsule network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:1-5.
[28] Yu Y T, Guan H Y, Li D L, et al. A hybrid capsule network for land cover classification using multispectral LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1263-1267.
doi: 10.1109/LGRS.8859
[29] Wang Q, Zhang X, Gu Y. Spatial-spectral smooth graph convolutional network for multispectral point cloud classification[C]// IEEE International Geoscience and Remote Sensing Symposium,IEEE, 2020:1062-1065.
[30] Li D, Shen X, Yu Y, et al. Building extraction from airborne multi-spectral LiDAR point clouds based on graph geometric moments convolutional neural networks[J]. Remote Sensing, 2020, 12(19):3186.
doi: 10.3390/rs12193186
[31] Yan W Y, Shaker A. Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 67:35-44.
[32] Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(2):291-298.
doi: 10.1109/89.279278
[33] Day N E. Estimating the components of a mixture of normal distributions[J]. Biometrika, 1969(3):463-474.
[1] 李云帆, 谭德宝, 刘瑞, 邬建伟. 顾及建筑物屋顶结构的改进RANSAC点云分割算法[J]. 国土资源遥感, 2017, 29(4): 20-25.
[2] 喻亮, 李婷, 詹庆明, 于坤. 基于多维欧氏空间相似度的激光点云分割方法[J]. 国土资源遥感, 2014, 26(3): 31-36.
[3] 朱红, 张正鹏. 车载LiDAR点云数据分割与半自动化建模方法[J]. 国土资源遥感, 2014, 26(1): 47-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发