Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 185-192    DOI: 10.6046/zrzyyg.2023265
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
西洞庭湖自然保护区2000—2020年间碳储量时空演变及成因分析
龙文芹1(), 职露2,3(), 郭娅迪4, 邹滨5, 曾立志1, 高浩1
1.汉寿县自然资源局,汉寿 415900
2.郑州师范学院地理与旅游学院,郑州 450000
3.信息工程大学数据与目标工程学院,郑州 450000
4.常德市自然资源和规划局信息中心,常德 415000
5.中南大学地球科学与信息物理学院,长沙 410083
Spatiotemporal evolution and origin of carbon stock in the West Dongting Lake National Nature Reserve over the last two decades
LONG Wenqin1(), ZHI Lu2,3(), GUO Yadi4, ZOU Bin5, ZENG Lizhi1, GAO Hao1
1. Hanshou County Natural Resources Bureau,Hanshou 415900, China
2. School of Geography and Tourism, Zhengzhou Normal University, Zhengzhou 450000, China
3. School of Data and Target Engineering, Information Engineering University, Zhengzhou 450000, China
4. Changde Natural Resources and Planning Bureau Information Center, Changde 415000, China
5. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
全文: PDF(6169 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

陆地生态系统碳储量是全球及区域碳循环研究的关键环节,西洞庭湖作为国家级自然保护区,其长时序碳储量的评估将为区域生态系统监测和管理提供科学数据支撑。该文基于2000—2020年土地利用数据,利用InVEST模型估算西洞庭湖近20 a的碳储量,以此探讨西洞庭湖碳储量的时空变化特征,识别碳储量重点变化区域。研究结果表明,西洞庭湖近20 a碳储量呈波动上升趋势,波动范围为113.5×104 ~ 125.7×104 t; 碳储量相对变化率仅2003年达到3.2%,其余时期均小于2%; 20 a内西洞庭湖核心区每年碳储量均居子区域首位,其次为试验区; 西洞庭湖大部分区域碳储量保持不变或变化较小,但仍有部分区域存在较为明显的变化; 重点变化区域呈聚集、线型及零散等多样化空间分布特征,其土地利用类型具有相应的变化强度; 西洞庭湖试验区碳储量变化受人为干扰影响较大,核心区碳储量主要与降水相关。研究结果有助于科学推进西洞庭湖自然保护区“双碳”目标的实施。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙文芹
职露
郭娅迪
邹滨
曾立志
高浩
关键词 西洞庭湖碳储量InVEST时空分布    
Abstract

Analyzing the carbon stock in a terrestrial ecosystem is a key link for research on the global and regional carbon cycle. Assessing the long-time-series carbon stock in the West Dongting Lake National Nature Reserve will provide scientific data for regional ecological monitoring and management. Based on the land use data from 2000 to 2020, this study explored the spatiotemporal changes in the carbon stock of the nature reserve based on the carbon stock estimated using the InVEST model and identified key areas of carbon stock changes. The results indicate that in the past two decades, the carbon stock in the nature reserve exhibited a fluctuating upward trend, ranging from 113.5×104 to 125.7×104 tons. The carbon stock presented relative changing rates of less than 2% during this period, except for 2003, when the changing rate was 3.2%. Over the past two decades, the core zone of the nature reserve ranked first in carbon stock among subregions every year, followed by the pilot zones. The carbon stock in most areas of the nature reserve remained unchanged or changed slightly. Nevertheless, there still existed some areas with significant changes in the carbon stock. The key areas of carbon stock changes featured diverse spatial distribution patterns of carbon stock, such as concentrated, linear, and scattered patterns, with land use types in these areas exhibiting corresponding change intensities of carbon stock. The changes in the carbon stock in the pilot zones were greatly affected by human interference, while those in the core area were primarily related to precipitation. The results of this study will assist in scientifically promoting carbon neutrality and peak carbon dioxide emissions in the West Dongting Lake National Nature Reserve.

Key wordsWest Dongting Lake National Nature Reserve    carbon stock    InVEST    spatiotemporal distribution
收稿日期: 2023-09-01      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:湖南省自然资源调查监测技术联盟课题“常德市生态修复工程碳监测项目”(202306);有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金项目“生态修复前后历史遗留矿山碳储量变化的遥感评估与预警模型研究”(2023YSJS03);自然资源部东南沿海海洋信息智能感知与应用重点实验室开放课题“滨海湿地红树林生态系统多源遥感碳汇监测研究”(23103)
通讯作者: 职露(1991-),女,博士,讲师,主要从事生态环境遥感研究。Email: zhilu_361@163.com
作者简介: 龙文芹(1976-),男,高级工程师,主要从事自然资源生态修复、水工环地质研究。Email: 2496954621@qq.com
引用本文:   
龙文芹, 职露, 郭娅迪, 邹滨, 曾立志, 高浩. 西洞庭湖自然保护区2000—2020年间碳储量时空演变及成因分析[J]. 自然资源遥感, 2024, 36(4): 185-192.
LONG Wenqin, ZHI Lu, GUO Yadi, ZOU Bin, ZENG Lizhi, GAO Hao. Spatiotemporal evolution and origin of carbon stock in the West Dongting Lake National Nature Reserve over the last two decades. Remote Sensing for Natural Resources, 2024, 36(4): 185-192.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023265      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/185
Fig.1  研究区概况
土地利用
类型
地上碳
密度
地下密度 土壤碳
密度
死亡有机
物碳密度
耕地 5.42 1.96 146.20 1.0
林地 64.20 118.00 207.30 3.5
草地 0.82 0.87 89.00 1.0
水体 0.00 0.00 0.00 0.0
不透水面 7.61 1.52 34.33 0.0
Tab.1  西洞庭湖不同土地利用类型碳密度
Fig.2  西洞庭湖2000—2020年碳储量年际变化
Fig.3  西洞庭湖2000—2020年耕地与水体面积占比年际变化
Fig.4  西洞庭湖碳储量与气象因子
Fig.5  西洞庭湖2000—2020年碳储量空间分布
Fig.6  西洞庭湖2000—2020年碳储量逐年变化时空分布
Fig.7  西洞庭湖2000—2020年碳储量变化频数及重点区域土地利用变化
Fig.8  西洞庭湖碳储量重点变化区域碳储量与PD散点图
[1] IPCC. Climate change 2021:The physical science basis,contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021
[2] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136-140.
Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2):136-140.
[3] 朱媛媛, 张瑞, 顾江, 等. “双碳”目标下长江中游城市群生态福利绩效变化的经济——环境效应[J]. 经济地理, 2023, 43(5):89-96.
doi: 10.15957/j.cnki.jjdl.2023.05.010
Zhu Y Y, Zhang R, Gu J, et al. Economic and environmental effects of ecological well-being performance change of urban agglomeration in the middle reaches of the Yangtze River under the carbon peaking and carbon neutrality goals[J]. Economic Geography, 2023, 43(5):89-96.
doi: 10.15957/j.cnki.jjdl.2023.05.010
[4] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae). 2022, 52(4):534-574.
[5] Zhao J F, Liu D S, Zhu Y J, et al. A review of forest carbon cycle models on spatiotemporal scales[J]. Journal of Cleaner Production, 2022, 339:130692.
[6] 张祯祺, 蔡惠文, 张平平, 等. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1):231-242.doi:10.6046/zrzyyg.2022042.
Zhang Z Q, Cai H W, Zhang P P, et al. A GEE - based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1):231-242.doi:10.6046/zrzyyg.2022042.
[7] 汪涛, 朴世龙. 青藏高原陆地生态系统碳汇估算:进展、挑战与展望[J]. 第四纪研究, 2023, 43(2):313-323.
Wang T, Piao S L. Estimate of terrestrial carbon balance over the Tibetan Plateau:Progresses,challenges and perspectives[J]. Quaternary Sciences, 2023, 43(2):313-323.
[8] 刘坤, 张慧, 孔令辉, 等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报, 2023, 43(10):4294-4307.
Liu K, Zhang H, Kong L H, et al. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica, 2023, 43(10):4294-4307.
[9] 朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学, 2022, 52(6):1010-1020.
Piao S L, He Y, Wang X H, et al. Carbon sequestration estimation of terrestrial ecosystem in China:Method,progress and prospect[J]. Scientia Sinica (Terrae), 2022, 52(6):1010-1020.
[10] Yao Y T, Piao S L, Wang T. Future biomass carbon sequestration capacity of Chinese forests[J]. Science Bulletin, 2018, 63(17):1108-1117.
doi: 10.1016/j.scib.2018.07.015 pmid: 36658990
[11] 令狐大智, 罗溪, 朱帮助. 森林碳汇测算及固碳影响因素研究进展[J]. 广西大学学报(哲学社会科学版), 2022, 44(3):142-155.
Linghu D Z, Luo X, Zhu B Z. Review on forest carbon sink measurement and influential factors of carbon sequestration[J]. Journal of Guangxi University(Philosophy and Social Science), 2022, 44(3):142-155.
[12] 隋玉正, 孙大鹏, 李淑娟, 等. 碳储存变化背景下东营市海岸带生态系统保护修复[J]. 生态学报, 2021, 41(20):8112-8123.
Sui Y Z, Sun D P, Li S J, et al. Study of coastal zone ecosystem restoration in the context of carbon storage change:A case of Dongying City[J]. Acta Ecologica Sinica, 2021, 41(20):8112-8123.
[13] Hwang J, Choi Y, Kim Y, et al. Analysis of the effect of environmental protected areas on land-use and carbon storage in a megalopolis[J]. Ecological Indicators, 2021, 133:108352.
[14] 刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10):4052-4065.
Liu Y, Zhang J, Zhou D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10):4052-4065.
[15] 韩玉, 丁素婷, 杨太保. 山西南部中条山生态系统碳储量时空分布及驱动因素[J]. 中国环境科学, 2023, 43(3):1298-1306.
Han Y, Ding S T, Yang T B. Spatial and temporal distribution and driving factors of carbon storage in Zhongtiao Mountain ecosystem in southern Shanxi Province[J]. China Environmental Science, 2023, 43(3):1298-1306.
[16] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348.
Yang L W, Zhao J, Zhu J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348
[17] 丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6):3343-3352.
Ding Y, Wang L Z, Gui F, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science, 2023, 44(6):3343-3352.
[18] 张猛, 陈淑丹, 林辉, 等. 洞庭湖湿地净初级生产力估算研究[J]. 遥感学报, 2023, 27(6):1454-1466.
Zhang M, Chen S D, Lin H, et al. Net primary productivity estimation of Dongting Lake wetland[J]. National Remote Sensing Bulletin, 2023, 27(6):1454-1466.
[19] Zhang M, Yuan N Q, Lin H, et al. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades[J]. Ecological Indicators, 2022, 135:108544.
[20] Zhou W Q, Wang J L, Han Y, et al. Scenario simulation of the relationship between land-use changes and ecosystem carbon storage:A case study in Dongting Lake Basin,China[J]. International Journal of Environmental Research and Public Health, 2023, 20(6):4835.
[21] An X X, Jin W P, Long X R, et al. Spatial and temporal evolution of carbon stocks in Dongting Lake wetlands based on remote sensing data[J]. Geocarto International, 2022, 37(27):14983-15009.
[22] 刘晓辉, 姜明, 朱庆龙, 等. 吉林莫莫格国家级自然保护区边界和功能区范围调整初探[J]. 湿地科学, 2021, 19(5):527-533.
Liu X H, Jiang M, Zhu Q L, et al. Adjustment of boundary and domain of functional areas of Momoge national nature reserve,Jilin Province[J]. Wetland Science, 2021, 19(5):527-533.
[1] 赵强, 王天鸠, 王涛, 程素丹. 基于InVEST模型的长三角生态绿色一体化示范区生境质量时空演变特征分析[J]. 自然资源遥感, 2024, 36(3): 187-195.
[2] 李玉清, 杨树文, 洪卫丽, 苏航, 雒亚文. 彩钢板建筑群视角下的西宁市产业园区时空分布研究[J]. 自然资源遥感, 2024, 36(2): 239-247.
[3] 吴冰洁, 文广超, 赵梅娟, 谢洪波, 冯雅杰, 贾琳. 基于Landsat的巴音河流域生态环境综合演化分析[J]. 自然资源遥感, 2024, 36(1): 227-234.
[4] 杨潋威, 赵娟, 朱家田, 刘雷, 张平. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
[5] 李博, 林文鹏, 李鲁冰. 面向SDG15的钱江源国家公园生态系统服务时空分析[J]. 自然资源遥感, 2022, 34(4): 243-253.
[6] 除多, 达娃, 拉巴卓玛, 徐维新, 张娟. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发