Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 173-184    DOI: 10.6046/zrzyyg.2023346
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
适应未来的山地城市可持续扩张绿色基础设施网络建设——以云南省临沧市为例
李健娥(), 张云()
西南林业大学园林园艺学院,昆明 650224
Construction of a green infrastructure network for sustainable expansion of mountain cities: A case study of Lincang City, Yunnan Province, China
LI Jian’e(), ZHANG Yun()
College of Horticulture and Landscape Architecture, Southwest Forestry University, Kunming 650224, China
全文: PDF(8486 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 构建区域绿色基础设施(green infrastructure, GI)网络可缓解快速城市化进程中土地利用与生态发展的矛盾,对未来的城市规划具有重要作用。以我国西南地区典型山地城市临沧市为例,利用未来土地利用模拟(patch-generating land use simulation, PLUS)模型预测2030年临沧市在生态优先情景下的土地利用和土地覆盖(land use and land cover, LULC); 在此基础上,整合形态空间格局分析(morphological spatial pattern analysis, MSPA)、最小累积阻力(minimum cumulative resistance, MCR)模型和电路理论提取生态源地和生态廊道,构建一个经过优化的适应临沧市未来可持续城市扩张的2030年GI网络。结果表明: 预测2020—2030年间,临沧市建设用地面积增加约23%,林地、草地面积分别减少0.2%和1.3%,由于合理的治理与保护,水域增长率高达46.9%; GI景观要素核心区面积占56.12%,边缘占21.3%,支线、桥接区、孤岛、穿孔、环道占比较小,5个总占比为22.6%; 在可持续的城市扩张情景下,GI规模变化不明显,建成区的GI相对分散,优化后的GI网络将由12个生态源地和24的生态廊道组成。研究基于MSPA-PLUS模型构建临沧市2030年GI网络,为临沧市和其他山地城市规划提供新思路,对GI保护和维护区域生态安全具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李健娥
张云
关键词 绿色基础设施网络MSPA-PLUS模型山地城市可持续扩张临沧市    
Abstract

Constructing a regional green infrastructure (GI) network can alleviate the contradiction between land use and ecological development in the process of rapid urbanization, playing a significant role in future urban planning. This study investigated Lincang City, a typical mountain city in Southwest China. Employing the patch-generating land use simulation (PLUS) model, this study predicted the land use and land cover (LULC) in Lincang City in 2030 under the ecological priority scenario. Furthermore, this study extracted information about the ecological source areas and corridors by integrating the morphological spatial pattern analysis (MSPA), minimum cumulative resistance (MCR) model, and circuit theory. Finally, this study constructed an optimized GI network for 2030 adapted to the sustainable expansion of Lincang City. The results show that from 2020 to 2030, the construction land area in Lincang City is projected to expand by about 23 %, while forest land and grassland will decrease by 0.2 % and 1.3 %, respectively. The water area is expected to increase by 46.9 % under reasonable management and protection. The core zone of GI landscape elements will represent 56.12% of the total area, while the edges will make up 21.3%. The spurs, bridging zones, islets, perforations, and circuits will constitute the rest 22.6%. Under the sustainable urban expansion scenario, the GI scale remains overall stable, with a relatively scattered distribution in built-up areas. The optimized GI network will involve 12 ecological source areas and 24 ecological corridors. The GI network of Lincang City in 2030 constructed based on the MSPA-PLUS model strengthens the understanding of the GI network for the sustainable development of a mountain city, adapting to future urban development. This study provides novel insights into the urban planning of mountain cities including Lincang and critical implications for GI protection and regional ecological security maintenance.

Key wordsgreen infrastructure network    MSPA-PLUS model    mountain city    sustainable expansion    Lincang City
收稿日期: 2023-11-14      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:云南省教育厅科学研究基金“‘荒野智慧’下的西双版纳州生物多样性保护策略研究”(2023Y0754);2021云南省专业学位研究生案例库建设项目“民族园林(传统村落保护规划)教学案例库”(编号: 云学位[2021]18号共同资助)
通讯作者: 张 云(1973-),男,副教授,主要从事景观规划与生态环境保护研究。Email: 1136482587@qq.com
作者简介: 李健娥(1997-),女,硕士研究生,主要从事景观规划与生态环境保护研究。Email: 2522186246@qq.com
引用本文:   
李健娥, 张云. 适应未来的山地城市可持续扩张绿色基础设施网络建设——以云南省临沧市为例[J]. 自然资源遥感, 2025, 37(2): 173-184.
LI Jian’e, ZHANG Yun. Construction of a green infrastructure network for sustainable expansion of mountain cities: A case study of Lincang City, Yunnan Province, China. Remote Sensing for Natural Resources, 2025, 37(2): 173-184.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023346      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/173
Fig.1  研究区示意图
类别 数据 分辨率/m 来源
自然因素 土地利用类型 30 Global30 (http://www.globallandcover.com/)
高程 地理空间数据云(http://www.gscloud.cn)
坡度 基于DEM数据得到
坡向 基于DEM数据得到
年平均气温 1 000 资源环境科学与数据中心(https://www.resdc.cn/)
年平均降水
区位因素 省道距离 30 全国地理信息资源目录服务系统(https://www.webmap.cn/main.do?method=index)
县道距离
乡道距离
铁路距离
居民点距离
水系距离
乡镇街道距离 30 国家统计局
社会因素 GDP 1 000 资源环境科学与数据中心(https://www.resdc.cn/)
人口密度 100 全国第七次人口普查
Tab.1  数据介绍及来源
Fig.2  驱动因子分布图
LULC
类型
耕地 林地 灌木 草地 水域 湿地 建设
用地
耕地 1 1 1 1 1 1 1
林地 0 1 0 0 0 0 0
灌木 1 1 1 1 1 1 1
草地 1 1 1 1 1 1 1
水域 0 0 0 0 1 0 0
湿地 0 0 0 0 0 1 0
建设用地 0 0 0 0 0 0 1
Tab.2  特定转换规则的成本矩阵
阻力因子 分级指标 阻力值 权重
地形起伏度/m <20 1 0.153 1
[20, 34) 3
[34, 50) 5
[50, 74) 7
[74, 666] 9
坡度/(°) <10.749 1 0.081 3
[10.749, 18.24) 3
[18.24, 25.73) 5
[25.73, 35.17) 7
[35.17, 83.06] 9
土地利用类型 林地/灌木 1 0.432 2
草地/耕地 3
水域 5
湿地 7
建设用地 9
与居民点距离/m [10 777.7, 22 163.8) 1 0.193 9
[6 866.4, 10 777.7) 3
[4 780.4, 6 866.4) 5
[2 868.26, 4 780.4) 7
<2 868.26 9
与水体距离/m [5 007.19, 10 913.11) 1 0.103
[3 338.12, 5 007.19) 3
[2 054.23, 3 338.12) 5
[941.52, 2 054.23) 7
<941.52 9
与道路距离/m [5 697.67, 12 418) 1 0.036 5
[3 603.65, 569 7.67) 3
[2 142.7, 3 603.65) 5
[925.26, 2 142.7) 7
<925.26 9
Tab.3  阻力因子分级赋值及权重
Fig.3  2020年实际和模拟LULC的比较
2020年实际
LULC
2020年预测LULC
耕地 林地 灌木 草地 水域 湿地 建筑用地
耕地 439.468 24.206 1.373 1.201 0.002 2.054 2.267
林地 41.85 700.329 20.796 15.893 0 3.662 0.782
灌木 0.641 1.567 8.334 0.425 0 0.296 0.102
草地 1.311 7.987 0.618 13.357 0 0.037 0.057
水域 0.021 0 0 0 0.128 0.022 0
湿地 0.275 0.453 0.054 0.004 0.013 2.975 0.016
建筑用地 0.783 0.172 0.02 0.012 0 0.034 4.766
Tab.4  2020年实际LULC与2020年模拟LULC转换矩阵
驱动因子 耕地 林地 灌木 草地 水域 湿地 建筑用地
铁路距离 0.139 0.165 0.095 0.218 0.009 0.218 0.108
GDP 0.098 0.115 0.112 0.149 0.023 0.149 0.064
高程 0.091 0.120 0.162 0.060 0.761 0.060 0.018
省道距离 0.090 0.082 0.065 0.086 0.002 0.086 0.021
县道距离 0.080 0.055 0.036 0.038 0.022 0.038 0.299
年平均降水 0.073 0.053 0.026 0.073 0.019 0.073 0.078
年平均气温 0.071 0.071 0.091 0.090 0.041 0.090 0.299
人口密度 0.069 0.061 0.069 0.066 0.025 0.066 0.033
居民点距离 0.065 0.067 0.174 0.048 0.012 0.048 0.046
乡镇街道距离 0.064 0.051 0.073 0.041 0.013 0.041 0.209
乡道距离 0.060 0.048 0.030 0.035 0.008 0.035 0.037
水系距离 0.050 0.058 0.031 0.047 0.017 0.047 0.026
坡度 0.028 0.032 0.023 0.028 0.046 0.028 0.019
坡向 0.022 0.023 0.013 0.021 0.002 0.021 0.008
Tab.5  各驱动因子的贡献
Fig.4  2030年城市可持续扩张LULC模拟
LULC 2020年 2030年
耕地 8 783.21 8 708.56
林地 13 368.66 13 341.73
灌木 588.94 572.25
草地 561.07 553.63
湿地 2.48 2.29
水域 198.90 292.19
建设用地 142.32 174.94
Tab.6  2020年和2030年的LULC
Fig.5  2030年GI的MSPA类型
Fig.6  生态源地的连通性分析
生态源地 IIC dPC 面积/km2
28 59.192 67 66.281 86 2 226.609 66
29 31.441 32 35.356 68 2 135.334 02
25 24.325 80 26.007 96 151.839 31
22 19.335 24 21.656 50 87.248 11
27 16.216 41 19.930 38 25.001 09
26 15.584 89 17.100 31 20.459 06
23 13.704 60 15.128 40 439.284 98
24 12.494 35 12.984 15 39.251 32
21 9.941 41 11.331 57 310.181 37
20 11.845 72 10.377 36 33.911 14
14 2.884 15 3.066 77 138.058 89
19 2.823 52 2.772 68 291.161 51
Tab.7  生态源地的连通性分析
Fig.7  生态阻力面
Fig.8  临沧市GI网络生态廊道建设
Fig.9  2030年临沧市可持续城市扩张的GI网络图
[1] Lee H, Song K, Kim G, et al. Flood-adaptive green infrastructure planning for urban resilience[J]. Landscape and Ecological Engineering, 2021, 17(4):427-437.
[2] Li K, Feng M, Biswas A, et al. Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM model:A case study from Gansu Province,China[J]. Sensors, 2020, 20(10):2757.
[3] Smart L S, Vukomanovic J, Sills E O, et al. Cultural ecosystem services caught in a ‘coastal squeeze’ between sea level rise and urban expansion[J]. Global Environmental Change, 2021, 66:102209.
[4] Bottalico F, Chirici G, Giannetti F, et al. Air pollution removal by green infrastructures and urban forests in the city of Florence[J]. Agriculture and Agricultural Science Procedia, 2016, 8:243-251.
[5] Gunnell K, Mulligan M, Francis R A, et al. Evaluating natural infrastructure for flood management within the watersheds of selected global cities[J]. Science of the Total Environment, 2019, 670:411-424.
doi: 10.1016/j.scitotenv.2019.03.212
[6] Li K, Li C, Liu M, et al. Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization[J]. Journal of Cleaner Production, 2021, 325:129324.
[7] Benedict M A, McMahon E T. Green infrastructure:Smart conservation for the 21st century[J]. Renewable resources journal, 2002, 20(3):12-17.
[8] Benedict M A, McMahon E. Green infrastructure:linking landscapes and communities[M]. Washington,DC: Island Press, 2006.
[9] Jeong D, Kim M, Song K, et al. Planning a green infrastructure network to integrate potential evacuation routes and the urban green space in a coastal city:The case study of Haeundae District,Bu-san,South Korea[J]. Science of the Total Environment, 2021, 761:143179.
[10] Lee Vincent, Bartholemew Richard, 赵志勇. 纽约绿色基础设施规划方法及在中国城市规划应用[J]. 中国给水排水, 2016, 32(15):126-129.
Lee V, Bartholemew R, Zhao Z Y. New York green infrastructure planning and its application to master planning of sponge city in China[J]. China Water & Wastewater, 2016, 32(15):126-129.
[11] 蒋文伟, 孙鹏. 绿色基础设施理论研究——以慈溪市绿地系统规划为例[J]. 北京林业大学学报(社会科学版), 2012, 11(2):54-59.
Jiang W W, Sun P. Theory research on green infrastructure:Taking green land system planning of Cixi City in Zhejiang Province as an example[J]. Journal of Beijing Forestry University (Social Sciences), 2012, 11(2):54-59.
[12] 裴丹. 生态保护网络化途径与保护优先级评价——“绿色基础设施” 精明保护策略[J]. 北京大学学报(自然科学版), 2012, 48(5):848-854.
Pei D. Ecological conservation networks and conservation priority evaluation:Green infrastructure as a smart conservation stratege[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(5):848-854.
[13] 丁金华, 孙琦, 钱晶. 基于MSPA-InVEST模型的水网乡村绿色基础设施网络构建研究——以吴江东北片区为例[J]. 西北林学院学报, 2022, 37(6):183-191.
Ding J H, Sun Q, Qian J. Research on the construction of green infrastructure network in the water net countryside based on MSPA-InVEST model:A case study of the northeast area of Wujiang[J]. Journal of Northwest Forestry University, 2022, 37(6):183-191.
[14] 何侃, 林涛, 吴建芳, 等. 基于空间优先级的福州市中心城区绿色基础设施网络构建[J]. 应用生态学报, 2021, 32(4):1424-1432.
doi: 10.13287/j.1001-9332.202104.017
He K, Lin T, Wu J F, et al. Construction of green infrastructure network based on spatial priority in downtown of Fuzhou,China[J]. Chinese Journal of Applied Ecology, 2021, 32(4):1424-1432.
[15] 费文君, 赵梦琴. 基于MSPA的南京市绿色基础设施网络构建[J]. 南京林业大学学报(自然科学版), 2022, 46(3):50-56.
doi: 10.12302/j.issn.1000-2006.202102017
Fei W J, Zhao M Q. Construction of Nanjing green infrastructure network based on MSPA[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(3):50-56.
[16] 袁逸敏, 李沛鸿, 熊凡. 基于MSPA与电路理论的赣州市绿色基础设施网络构建[J]. 安徽农业科学, 2023, 51(12):15-20.
Yuan Y M, Li P H, Xiong F. Construction of green infrastructure network in Ganzhou City based on MSPA and circuit theory[J]. Journal of Anhui Agricultural Sciences, 2023, 51(12):15-20.
[17] 陈炯臻, 季翔, 葛希辰, 等. 基于MSPA和空间句法的县域绿色基础设施网络时空格局演变分析: 以徐州市睢宁县为例[J]. 现代城市研究, 2022, 37(10):101-107.
Chen J Z, Ji X, Ge X C, et al. Spatial and temporal pattern evolution of county green infrastructure network based on MSPA and spatial syntax:A case study of Suining County in Xuzhou City[J]. Modern Urban Research, 2022, 37(10):101-107.
[18] 于亚平, 尹海伟, 孔繁花, 等. 基于MSPA的南京市绿色基础设施网络格局时空变化分析[J]. 生态学杂志, 2016, 35(6):1608-1616.
Yu Y P, Yin H W, Kong F H, et al. Analysis of the temporal and spatial pattern of the green infrastructure network in Nanjing,based on MSPA[J]. Chinese Journal of Ecology, 2016, 35(6):1608-1616.
[19] 陈晨, 徐威杰, 张彦, 等. 独流减河流域绿色基础设施空间格局与景观连通性分析的尺度效应[J]. 环境科学研究, 2019, 32(9):1464-1474.
Chen C, Xu W J, Zhang Y, et al. Scale effect of the spatial pattern and connectivity analysis for the green infrastructure in Duliujian River basin[J]. Research of Environmental Sciences, 2019, 32(9):1464-1474.
[20] 于亚平, 尹海伟, 孔繁花, 等. 南京市绿色基础设施网络格局与连通性分析的尺度效应[J]. 应用生态学报, 2016, 27(7):2119-2127.
doi: 10.13287/j.1001-9332.201607.006
Yu Y P, Yin H W, Kong F H, et al. Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2119-2127.
[21] 马银, 郑敏睿, 郑新奇, 等. 基于CA-Markov和MSPA的绿色基础设施预测与时空演变分析——以京津冀城市群为例[J]. 生态学报, 2023, 43(16):6785-6797.
Ma Y, Zheng M R, Zheng X Q, et al. Prediction and spatiotemporal evolution analysis of green infrastructure based on CA-Markov and MSPA:A case study of Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Ecologica Sinica, 2023, 43(16):6785-6797.
[22] 杨朔, 苏昊, 赵国平. 基于PLUS模型的城市生态系统服务价值多情景模拟——以汉中市为例[J]. 干旱区资源与环境, 2022, 36(10):86-95.
Yang S, Su H, Zhao G P. Multi-scenario simulation of urban ecosystem service value based on PLUS model:A case study of Hanzhong City[J]. Journal of Arid Land Resources and Environment, 2022, 36(10):86-95.
[23] Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use si-mulation (PLUS) model:A case study in Wuhan,China[J]. Computers,Environment and Urban Systems, 2021, 85:101569.
[24] 舒晓艺. 南流江流域土地利用/覆被变化模拟研究[D]. 南宁: 南宁师范大学, 2021.
Shu X Y. Simulation research on land use/cover change in Nanliu River Basin[D]. Nanning: Nanning Normal University, 2021.
[25] Wang F, Chen J, Tong S, et al. Construction and optimization of green infrastructure network based on space syntax:A case study of Suining County,Jiangsu Province[J]. Sustainability, 2022, 14(13):7732.
[26] 汪勇政, 李久林, 顾康康, 等. 基于形态学空间格局分析法的城市绿色基础设施网络格局优化——以合肥市为例[J]. 生态学报, 2022, 42(5):2022-2032.
Wang Y Z, Li J L, Gu K K, et al. Optimization of urban green infrastructure network layout based on MSPA-CIRCUIT:Case of Hefei[J]. Acta Ecologica Sinica, 2022, 42(5):2022-2032.
[27] 田永莲. 基于MSPA和MCR模型的重庆中心城区绿色基础设施网络构建研究[D]. 重庆: 西南大学, 2022.
Tian Y L. The study on green infrastructure network in Chongqing central based on MSPA and MCR model[D]. Chongqing: Southwest University, 2022.
[28] 汪子茗, 吕梁, 汪峰. 基于多源数据的山地县域绿色基础设施网络构建及修复策略——以重庆市万州区为例[J]. 热带地理, 2024, 44(2):303-314.
doi: 10.13284/j.cnki.rddl.003777
Wang Z M, Lyu L, Wang F. Construction and restoration strategies of green infrastructure network in mountainous counties based on multi-source data:A case study of Wanzhou District,Chongqing[J]. Tropical Geography, 2024, 44(2):303-314.
[29] 赵海霞, 范金鼎, 骆新燎, 等. 绿色基础设施格局变化及其驱动因素——以南京市为例[J]. 生态学报, 2022, 42(18):7597-7611.
Zhao H X, Fan J D, Luo X L, et al. Changes of green infrastructure pattern and its driving factors:Taking Nanjing as an example[J]. Acta Ecologica Sinica, 2022, 42(18):7597-7611.
[30] 曹畅, 车生泉. 融合MCR模型的绿色基础设施适宜性评价——以上海市青浦区练塘镇为例[J]. 西北林学院学报, 2020, 35(6):304-312.
Cao C, Che S Q. Suitability evaluation of green infrastructures based on MCR model:A case study of Liantang Township,Qingpu District,Shanghai[J]. Journal of Northwest Forestry University, 2020, 35(6):304-312.
[31] Zhang J, Zhu H, Zhang P, et al. Construction of GI network based on MSPA and PLUS model in the main urban area of Zhengzhou:A case study[J]. Frontiers in Environmental Science, 2022, 10:878656.
[32] Zhang X, Ren Y, Zhang D, et al. Construction of the green infrastructure network for adaption to the sustainable future urban sprawl:A case study of Lanzhou City,Gansu Province,China[J]. Ecological Indicators, 2022, 145:109715.
[33] 汪辉, 刘媛, 时艳, 等. 基于PLUS模型的溱湖国家湿地公园情景模拟与预测[J]. 浙江农林大学学报, 2023, 40(6):1311-1321.
Wang H, Liu Y, Shi Y, et al. Scenario simulation and prediction of Qinhu National Wetland Park based on PLUS Model[J]. Journal of Zhejiang A & F University, 2023, 40(6):1311-1321.
[34] 牛统莉, 熊立华, 陈杰, 等. 基于PLUS模型的长江流域土地利用变化模拟与多情景预测[J]. 武汉大学学报(工学版), 2024, 57(2):129-141,151.
Niu T L, Xiong L H, Chen J, et al. Land use simulation and multi-scenario prediction of the Yangtze River Basin based on PLUS model[J]. Engineering Journal of Wuhan University, 2024, 57(2):129-141,151.
[35] 胡佶熹, 勒先文, 王卫林, 等. 基于PLUS-InVEST模型的江西省生态系统碳储量时空演变与预测[J]. 环境科学, 2024, 45(6):3284-3296.
Hu J X, Le X W, Wang W L, et al. Temporal and spatial evolution and prediction of ecosystem carbon storage in Jiangxi Province based on PLUS-InVEST model[J]. Environmental Science, 2024, 45(6):3284-3296.
[36] 何苏玲, 贺增红, 潘继亚, 等. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4):201-213.doi:10.6046/zrzyyg.2022274.
He S L, He Z H, Pan J Y, et al. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4):201-213.doi:10.6046/zrzyyg.2022274.
[1] 曹琦, 师满江, 周亮, 王婷, 彭黎君, 郑仕雷. 山地城市裸地时空变化的热环境响应特征研究[J]. 国土资源遥感, 2019, 31(4): 190-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发