Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 185-193    DOI: 10.6046/zrzyyg.2023378
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
2000—2022年北京市植被春季物候期变化特征分析
谢宜嘉1(), 杨倍倍2,3, 张镇1, 陈佳1, 王喆1, 孟令奎1()
1.武汉大学遥感信息工程学院,武汉 430072
2.长江空间信息技术工程有限公司(武汉),武汉 430010
3.湖北省水利信息感知与大数据工程技术研究中心,武汉 430010
Analysis of the changes in spring phenology of vegetation in Beijing City from 2000 to 2022
XIE Yijia1(), YANG Beibei2,3, ZHANG Zhen1, CHEN Jia1, WANG Zhe1, MENG Lingkui1()
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China
2. Changjiang Spatial Information Technology Engineering Co., Ltd. (Wuhan), Wuhan 430010, China
3. Hubei Water Conservancy Information Perception and Big Data Engineering Technology Research Center, Wuhan 430010, China
全文: PDF(3269 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

春季物候的研究对于了解植被生长发育周期、探索其对气候环境变化的响应机制有着重要的意义,也为指导农业生产、保护和恢复生态系统提供了重要参考。该文对2000—2022年北京市的MOD13Q1数据进行时间序列重建,基于动态阈值法提取出23 a内北京市植被的春季物候,进一步通过Mann-Kendall趋势检验法对北京市的春季物候进行时空变化特征分析,最后使用偏相关分析方法分析了春季物候对气候变化的响应差异。主要结论如下: ①北京市植被的春季物候平均在第117天(四月下旬),在过去近20 a约以1.14 d/a的变化速率逐渐提前; ②不同植被类型的春季物候呈现层级差异,其中森林的春季物候最早,为第107天,灌木和草地次之,分别为第117天和第119天,农田最晚,为第130天; ③年均温度对春季物候的影响存在显著的区域差异,其中河流、水库等水源充沛地区呈正相关关系,在房山区东部存在显著的负相关关系; ④从月尺度来看,11,12,1,2月气温对春季物候的影响最大,随着冬季气温的上升,植物春季物候表现出提前的趋势。该研究探索了北京市植被春季物候对于气温和降水的响应机制,为气候变化背景下植被生产指导提供了参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢宜嘉
杨倍倍
张镇
陈佳
王喆
孟令奎
关键词 植被遥感物候NDVI时间序列重建    
Abstract

Investigating spring phenology is critical for understanding the growth and development cycles of vegetation and the response mechanisms to climate and environmental changes. It also provides significant insights for guiding agricultural production and protecting and restoring ecosystems. This study reconstructed the time series of MOD13Q1 data for Beijing City from 2000 to 2022. Based on dynamic thresholding, this study extracted the spring phenology of vegetation in Beijing City over the past 23 years. Furthermore, this study analyzed the spatiotemporal changes in spring phenology in Beijing City using the Mann-Kendall (M-K) trend test. Finally, this study examined the differential responses of spring phenology to climate change through partial correlation analysis. The results of this study indicate that the average spring phenology of vegetation in Beijing City occurred on the 117th day of a year (in late April), advancing at an average rate of approximately 1.14 days per year over the past 23 years. Different duo exhibited distinct hierarchical variations in spring phenology. Forests showed the earliest spring phenology starting from the 107th day, followed by shrubs (the 117th day) and grasslands (the 119th day), with the latest being farmland (the 130th day). The impacts of average annual temperature on spring phenology exhibited significant spatial variations. A positive correlation was observed in water-rich areas such as rivers and reservoirs, whereas a significant negative correlation occurred in eastern Fangshan District. On a monthly scale, temperatures in November, December, January, and February significantly influenced spring phenology. As winter temperatures rose, the spring phenology of vegetation tended to advance. This study explores the response mechanisms of spring phenology of vegetation in Beijing City to temperature and precipitation, providing valuable insights for vegetation management under climate change.

Key wordsremote sensing vegetation phenology    NDVI    time series reconstruction
收稿日期: 2023-12-13      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:国家重点研发计划“水利工程建设与运行期遥感监测监督与风险预警”(2021YFB3900603)
通讯作者: 孟令奎(1967-),男,博士后,教授,主要从事水利遥感监测、网络GIS、计算机系统结构和高性能计算等方面的研究。Email: lkmeng@whu.edu.cn
作者简介: 谢宜嘉(2000-),女,硕士研究生,主要从事遥感植被物候与干旱监测研究。Email: 2017302590075@whu.edu.cn
引用本文:   
谢宜嘉, 杨倍倍, 张镇, 陈佳, 王喆, 孟令奎. 2000—2022年北京市植被春季物候期变化特征分析[J]. 自然资源遥感, 2025, 37(2): 185-193.
XIE Yijia, YANG Beibei, ZHANG Zhen, CHEN Jia, WANG Zhe, MENG Lingkui. Analysis of the changes in spring phenology of vegetation in Beijing City from 2000 to 2022. Remote Sensing for Natural Resources, 2025, 37(2): 185-193.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023378      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/185
Fig.1  研究技术路线图
Fig.2  遥感春季物候年际变化图
Fig.3  四种地物春季物候的年际变化图
Fig.4  北京市春季物候年际变化趋势分析
Fig.5  北京市春季物候多年均值空间分布
Fig.6  春季物候与气象因子的偏相关分析
月份 气温 降水
11月 -0.231 0.047*
12月 -0.664** -0.033
1月 -0.208 0.096
2月 -0.234 -0.265
3月 -0.248 -0.039
4月 -0.351 -0.195
Tab.1  春季物候与11—4月气温、降水量的相关性分析
月份 气温 降水
4月 -0.351 -0.195
3—4月 -0.374 -0.135
2—4月 -0.498* -0.226
1—4月 -0.606** -0.140
上一年12月—4月 -0.562** -0.117
上一年11月—4月 -0.512* -0.098
Tab.2  春季物候与气温和降水的累积月相关性
[1] 陆佩玲, 于强, 贺庆棠. 植物物候对气候变化的响应[J]. 生态学报, 2006, 26(3):923-929.
Lu P L, Yu Q, He Q T. Responses of plant phenology to climatic change[J]. Acta Ecologica Sinica, 2006, 26(3):923-929.
[2] 付永硕, 张晶, 吴兆飞, 等. 中国植被物候研究进展及展望[J]. 北京师范大学学报(自然科学版), 2022, 58(3):424-433.
Fu Y S, Zhang J, Wu Z F, et al. Vegetation phenology response to climate change in China[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(3):424-433.
[3] Li S, Xu L, Jing Y, et al. High-quality vegetation index product generation:A review of NDVI time series reconstruction techniques[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105:102640.
[4] Viovy N, Arino O, Belward A S. The best index slope extraction (BISE):A method for reducing noise in NDVI time-series[J]. International Journal of Remote Sensing, 1992, 13(8):1585-1590.
[5] Chen J, Jönsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004, 91(3/4):332-344.
[6] Roerink G J, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2000, 21(9):1911-1917.
[7] 李军, 朱慧. 重庆地区MODIS/NDVI时间序列数据重建研究[J]. 地理科学, 2017, 37(3):437-444.
doi: 10.13249/j.cnki.sgs.2017.03.014
Li J, Zhu H. The reconstruction of MODIS/NDVI time series data in Chongqing[J]. Scientia Geographica Sinica, 2017, 37(3):437-444.
doi: 10.13249/j.cnki.sgs.2017.03.014
[8] 王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3):431-455.
Wang M Y, Luo Y, Zhang Z Y, et al. Recent advances in remote sensing of vegetation phenology:Retrieval algorithm and validation strategy[J]. National Remote Sensing Bulletin, 2022, 26(3):431-455.
[9] Zeng L, Wardlow B D, Xiang D, et al. A review of vegetation phenological metrics extraction using time-series,multispectral satellite data[J]. Remote Sensing of Environment, 2020, 237:111511.
[10] 范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
Fan D Q, Zhao X S, Zhu W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 2016, 35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
[11] Berra E F, Gaulton R. Remote sensing of temperate and boreal fo-rest phenology:A review of progress,challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics[J]. Forest Ecology and Management, 2021, 480:118663.
[12] Han H, Bai J, Ma G, et al. Vegetation phenological changes in multiple landforms and responses to climate change[J]. ISPRS International Journal of Geo-Information, 2020, 9(2):111.
[13] 谭静, 陈正洪, 肖玫. 武汉大学樱花花期长度特征及预报方法[J]. 生态学报, 2021, 41(1):38-47.
Tan J, Chen Z H, Xiao M. Characteristics and forecast of flowering duration of cherry blossoms in Wuhan University[J]. Acta Ecologica Sinica, 2021, 41(1):38-47.
[14] Zhang R, Qi J, Leng S, et al. Long-term vegetation phenology changes and responses to preseason temperature and precipitation in northern China[J]. Remote Sensing, 2022, 14(6):1396.
[15] 赵心睿, 刘冀, 杨少康, 等. 北方地区典型林草地物候时空变化特征及其对气象因子的响应[J]. 生态学报, 2023, 43(9):3744-3755.
Zhao X R, Liu J, Yang S K, et al. Spatio-temporal variations of typical woodland and grassland phenology and its response to meteorological factors in Northern China[J]. Acta Ecologica Sinica, 2023, 43(9):3744-3755.
[16] 张港栋, 包刚, 元志辉, 等. 2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响[J]. 干旱区地理, 2023, 46(5):700-710.
doi: 10.12118/j.issn.1000-6060.2022.395
Zhang G D, Bao G, Yuan Z H, et al. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020[J]. Arid Land Geography, 2023, 46(5):700-710.
doi: 10.12118/j.issn.1000-6060.2022.395
[17] Piao S, Liu Q, Chen A, et al. Plant phenology and global climate change:Current progresses and challenges[J]. Global Change Bio-logy, 2019, 25(6):1922-1940.
[18] 梁晨, 安菁, 范雅倩, 等. 北京松山国家级自然保护区典型植被类型表层土壤碳密度及周转速率特征[J]. 地球与环境, 2020, 48(6):672-679.
Liang C, An J, Fan Y Q, et al. Surface soil carbon density and turnover rate of typical vegetation types in Beijing Songshan national nature reserve[J]. Earth and Environment, 2020, 48(6):672-679.
[19] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
doi: 10.5194/essd-13-3907-2021
[20] Vorobiova N, Chernov A. Curve fitting of MODIS NDVI time series in the task of early crops identification by satellite images[J]. Procedia Engineering, 2017, 201:184-195.
[21] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1824-1832.
[22] 李儒, 张霞, 刘波, 等. 遥感时间序列数据滤波重建算法发展综述[J]. 遥感学报, 2009, 13(2):335-341.
Li R, Zhang X, Liu B, et al. Review on methods of remote sensing time-series data reconstruction[J]. National Remote Sensing Bulletin, 2009, 13(2):335-341.
[23] 王刚, 严登华, 黄站峰, 等. 近52年来滦河流域气候变化趋势分析[J]. 干旱区资源与环境, 2011, 25(7):134-139.
Wang G, Yan D H, Huang Z F, et al. Climatic change characteristics in the latest 52 years in Luan River Basin[J]. Journal of Arid Land Resources and Environment, 2011, 25(7):134-139.
[24] 姜萍, 潘新民, 曾雪莹. 中国不同农业区气温和降水时空演变格局分析[J]. 水土保持研究, 2020, 27(4):270-278.
Jiang P, Pan X M, Zeng X Y. Temporal and spatial variation of temperature and precipitation in each agricultural sub-region of China[J]. Research of Soil and Water Conservation, 2020, 27(4):270-278.
[25] 高弋斌, 路春燕, 钟连秀, 等. 1951—2016年中国沿海地区气温与降水量的时空特征[J]. 森林与环境学报, 2019, 39(5):530-539.
Gao Y B, Lu C Y, Zhong L X, et al. Temporal and spatial characteristics of temperature and precipitation in China’s coastal areas from 1951 to 2016[J]. Journal of Forest and Environment, 2019, 39(5):530-539.
[26] 陈洪滨, 范学花. 2006年极端天气和气候事件及其他相关事件的概要回顾[J]. 气候与环境研究, 2007, 12(1):100-112.
Chen H B, Fan X H. Some extreme events of weather,climate and related phenomena in 2006[J]. Climatic and Environmental Research, 2007, 12(1):100-112.
[27] Xu J, Tang Y, Xu J, et al. Evaluation of vegetation indexes and green-up date extraction methods on the Tibetan Plateau[J]. Remote Sensing, 2022, 14(13):3160.
[28] 徐韵佳, 葛全胜, 戴君虎, 等. 近50年中国典型木本植物展叶始期温度敏感度变化及原因[J]. 生态学报, 2019, 39(21):8135-8143.
Xu Y J, Ge Q S, Dai J H, et al. Variations in temperature sensitivity of leaf unfolding date and their influencing factors for typical woody plants in China over the past 50 years[J]. Acta Ecologica Sinica, 2019, 39(21):8135-8143.
[29] Yuan M, Wang L, Lin A, et al. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin,China[J]. Ecological Indicators, 2020, 108:105760.
[30] Jiang N, Shen M, Chen J, et al. Continuous advance in the onset of vegetation green-up in the Northern Hemisphere,during hiatuses in spring warming[J]. NPJ Climate and Atmospheric Science, 2023, 6(1):7.
[31] 卜亚勤, 丁海勇. 北京植被物候时空变化及其对城市化的响应[J]. 遥感信息, 2022, 37(2):112-118.
Bu Y Q, Ding H Y. Spatiotemporal variation of vegetation phenology and its response to urbanization in Beijing[J]. Remote Sensing Information, 2022, 37(2):112-118.
[32] 孟丹, 刘芯蕊, 张聪聪. 北京市植物物候对热岛效应的响应[J]. 生态学杂志, 2021, 40(3):844-854.
Meng D, Liu X R, Zhang C C. Responses of plant phenology to urban heat island effects in Beijing[J]. Chinese Journal of Ecology, 2021, 40(3):844-854.
doi: 10.13292/j.1000-4890.202103.029
[33] Kloos S, Yuan Y, Castelli M, et al. Agricultural drought detection with MODIS based vegetation health indices in southeast Germany[J]. Remote Sensing, 2021, 13(19):3907.
[34] 张港栋, 包刚, 黄晓君, 等. 蒙古国冬春季气候非对称变暖及其对植被返青期和春季NDVI的影响[J]. 干旱区地理, 2023, 46(8):1238-1249.
doi: 10.12118/j.issn.1000-6060.2022.686
Zhang G D, Bao G, Huang X J, et al. Asymmetrical warming in winter and spring and its effect on start of growing season and spring NDVI in Mongolia[J]. Arid Land Geography, 2023, 46(8):1238-1249.
doi: 10.12118/j.issn.1000-6060.2022.686
[35] Shen X, Jiang M, Lu X. Diverse impacts of day and night temperature on spring phenology in freshwater marshes of the Tibetan Pla-teau[J]. Limnology and Oceanography Letters, 2023, 8(2):323-329.
[36] Wang H, Wu C, Ciais P, et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling[J]. Nature Communications, 2020, 11(1):4945.
doi: 10.1038/s41467-020-18743-8 pmid: 33009378
[1] 钟旭珍, 吴瑞娟. 基于BFAST改进模型的沱江流域NDVI变化趋势及驱动力分析[J]. 自然资源遥感, 2025, 37(1): 131-141.
[2] 杨涛, 王立社, 郑鹏鹏, 王鹏, 赵寒森, 杨生飞, 赵君, 奚仁刚, 任华宁, 蔡浩杰. 2001—2022年陕西省植被NDVI时空分异及其对气候与矿业行为的响应[J]. 自然资源遥感, 2025, 37(1): 82-93.
[3] 李益敏, 冯显杰, 李媛婷, 杨雪, 向倩英, 计培琨. 云南省植被覆盖时空变化特征及影响因素研究[J]. 自然资源遥感, 2024, 36(2): 116-125.
[4] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[5] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[6] 张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
[7] 曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
[8] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[9] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[10] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[11] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[12] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[13] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[14] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[15] 宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感, 2020, 32(2): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发