Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 10-21    DOI: 10.6046/zrzyyg.2022412
  地球数据共享和知识服务 本期目录 | 过刊浏览 | 高级检索 |
国际耦合模式比较计划地球模拟数据全球共享体系分析
刘昱甫1(), 白玉琪1,2()
1.清华大学地球系统科学系,东亚迁徙鸟类与栖息地生态学教育部野外科学观测研究站,清华大学全球变化研究院,北京 100084
2.清华大学中国城市研究院,北京 100084
Global sharing system of Earth simulation data in the Coupled Model Intercomparison Project
LIU Yufu1(), BAI Yuqi1,2()
1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
2. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China
全文: PDF(3901 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

国际耦合模式比较计划(Coupled Model Intercomparison Project,CMIP)第六阶段(CMIP6)作为支撑全球气候研究和联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)评估报告的重要科学计划,其数据规模已增长至PB级别,对数据管理与共享提出了更高要求。地球系统网格联盟(Earth System Grid Federation, ESGF)作为CMIP6官方指定的全球分布式数据基础设施,构建了一套覆盖数据全生命周期的软件体系,实现了从模式输出、质量控制、规范存储到全球分发的完整流程。该文系统介绍了ESGF的系统架构、节点组成与数据管理方法,重点阐述了其在CMIP6数据发布、元数据管理、版本控制、数据引用与服务质量监测等方面的关键机制。研究表明,ESGF在支持CMIP6数据全球共享中发挥了核心作用,我国也在其中积极参与并作出重要贡献; 尽管ESGF在网络性能和服务均衡性方面仍面临挑战,但其正在向集成在线分析与近数据计算的新一代服务平台演进,为地球系统科学数据共享提供更加高效和可持续的支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘昱甫
白玉琪
关键词 国际耦合模式比较计划地球系统网格联盟气候模式数据数据共享    
Abstract

Remote sensing-based Earth observation and Earth system numerical simulation serve as two significant technical means in revealing the Earth’s environmental changes and predicting its future states. Hence, they assist in enhancing the capacity of human society to mitigate and adapt to global change and in ensuring the sustainable development of the natural environment and human society. The Coupled Model Intercomparison Project (CMIP) is a large-scale international collaboration project in the field of Earth system numerical simulation, aiming to coordinate various countries to complete the simulations of the Earth’s historical environment and the predictions of its future states. The Earth simulation data generated in the CMIP directly support the global climate change assessments of the Intergovernmental Panel on Climate Change (IPCC), United Nations, providing a solid scientific basis for global climate negotiations and governance. The CMIP Phase 6 (CMIP6) has generated up to 30 petabytes (PB) of Earth simulation data. The management and sharing of these data are achieved through the Earth System Grid Federation (ESGF). This study elucidates the CMIP organizational scheme, the ESGF system architecture, and the sharing and interoperability progress of Earth simulation data. It can provide a reference for planning, designing, and operating large-scale networks for sharing remote sensing science data.

Key wordsCoupled Model Intercomparison Project (CMIP)    Earth System Grid Federation (ESGF)    climate model data    data sharing
收稿日期: 2022-10-26      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“面向开放科学的国际地球观测系统互操作体系研究与示范”(2019YFE0126400)
通讯作者: 白玉琪(1976-),男,博士,教授,主要从事地球空间数据基础设施研究。Email: yuqibai@tsinghua.edu.cn
作者简介: 刘昱甫(1996-),男,博士研究生,主要从事地球信息科学研究。Email: liuyufu18@mails.tsinghua.edu.cn
引用本文:   
刘昱甫, 白玉琪. 国际耦合模式比较计划地球模拟数据全球共享体系分析[J]. 自然资源遥感, 2025, 37(6): 10-21.
LIU Yufu, BAI Yuqi. Global sharing system of Earth simulation data in the Coupled Model Intercomparison Project. Remote Sensing for Natural Resources, 2025, 37(6): 10-21.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022412      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/10
Fig.1  CMIP6实验示意图
Fig.2  CMIP5/6数据流图
Fig.3  ESGF的多节点网络示意图
Fig.4  ESGF的节点包含的服务
Fig.5  ESGF数据处理和发布流程
CMIP6全局属性 属性缩写 示例 是否需要
活动ID activity_id “CMIP”,“PMIP” 总是
分支方法 branch_method “standard”,“noparent” 当父元素存在时
子模拟的分支时间 branch_time_in_child 365.0D0,0.0D0 当父元素存在时
父模拟的分支时间 branch_time_in_parent 3 650.0D0 当父元素存在时
注释 comment 从不
联系人 contact 从不
约定版本 Conventions “CF-1.7CMIP-6.2” 总是
创建日期 creation_date 总是
数据规范版本 data_specs_version 01.00.00,01.00.01,…01.00.xx 总是
实验 experiment “pre-industrialcontrol” 总是
实验ID experiment_id “historical”,“abrupt4xCO2” 总是
外部变量 external_variables “areacella”,“areacello” 合适时
强迫指数 forcing_index 1,2,82,323 总是
频率 frequency “mon”,“day”,“6 h” 总是
详细信息网址 further_info_url 总是
网格 grid 总是
网格标签 grid_label “gn”,“gr”,“gr1”,“gr2”,“grz”,“gm” 总是
历史记录 history 从不
初始化指数 initialization_index 1 总是
机构 institution “Meteorological Research Institute” 总是
机构ID institution_id “IPSL” 总是
许可协议 license 总是
MIP阶段 mip_era “CMIP5”,“CMIP6” 总是
标称分辨率 nominal_resolution “50 km”,“100 km”,“250 km”,“1x1degree” 总是
父活动ID parent_activity_id “CMIP”,ScenarioMIP 当父元素存在时
父实验ID parent_experiment_id “piControl” 当父元素存在时
父模拟MIP阶段 parent_mip_era “CMIP5”,“CMIP6” 当父元素存在时
父模拟源ID parent_source_id “CanCM4” 当父元素存在时
父模拟时间单位 parent_time_units “dayssince1850-1-1”,“dayssince1000-1-1(noleap)” 当父元素存在时
父模拟变体标签 parent_variant_label “r1i1p1f1”,“r1i2p223f3”,“noparent” 当父元素存在时
物理指数 physics_index 3 总是
产品类型 product “model-output” 总是
实现指数 realization_index 5 总是
领域 realm “atmos”,“ocean” 总是
参考文献 references 从不
源描述 source 总是
源ID source_id “GFDL-CM2-1” 总是
源类型 source_type “AGCM”,“OGCM”,“AOGCM”,“ISM”, AOGCMISM” 总是
子实验 sub_experiment 总是
子实验ID sub_experiment_id “s1960”,“s1965”,“none” 总是
表格ID table_id “Amon”,“Oday” 总是
标题 title 从不
追踪ID tracking_id 总是
变量ID variable_id “tas”,“pr”,“ua” 总是
变体信息 variant_info “forcing: black carbon aerosol only” 从不,但是推荐
变体标签 variant_label “r1i1p1f1”,“f1i2p223f3” 总是
Tab.1  CMIP6数据的全局属性
Fig.6  ESGF中通过DOI引用CMIP6数据的工作流
元数据 字段 名称 示例




必需
字段
id cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1.v20110323|pcmdi9.llnl.gov
title project=CMIP5/IPCCFifthAssessmentReport,model=InstituteforNumericalMathematics,experiment=1percentperyearCO2,time_frequency=day,modelingrealm=atmos,ensemble=r1i1p1,version=20110323
type Dataset
project CMIP5
dataset_id cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1.v20110323|pcmdi9.llnl.gov
index_node pcmdi9.llnl.gov
data_node pcmdi11.llnl.gov
可选
版本
和镜
像字
version 20110323
master_id cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1
replica FALSE
latest TRUE
shard localhost: 8982
checksum 7fcd959a4bb57e4079c8e65a7a5d0499
checksum_type SHA256
可选
通用
字段
description inmcm4modeloutputpreparedforCMIP51percentperyearCO2
url http://pcmdi9.llnl.gov/thredds/esgcet/1/cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1.v20110323.xml#cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1
access THREDDS,LAS
timestamp 2012-01-13T01: 34: 15Z
schema cmip5
format NetCDF
可选
下载
字段
size 2874053764
number_of_files 2
number_of_aggregations 2






可选
地球
科学
通用
字段
variable ta
variable_long_name AirTemperature
variable_units K
cf_standard_name air_temperature
可选
时空
搜索
字段
datetime_start 2090-01-01T12: 00: 00Z
datetime_stop 2229-12-31T12: 00: 00Z
north_degrees 89.25
east_degrees 358
south_degrees -89.25
west_degrees 0.0
height_bottom 100000.0
height_top 1000.0
height_units Pa






必需
DRS
字段
model INM-CM4
experiment 1pctCO2
product output1
realm atmos
time_frequency day
tracking_id bbf37d89-fd8a-4aa6-b42b-eb4adfe6504b
可选
元数
据字
ensemble r1i1p1
experiment_family Historical
cmor_table Amon
dataset_id_template cmip5.%(product)s.%(valid_institute)s.%(model)s.%(experiment)s.%(time_frequency)s.%(realm)s.%(cmor_table)s.%(ensemble)s
drs_id cmip5.output1.INM.inmcm4.1pctCO2.day.atmos.day.r1i1p1
forcing Nat
Tab.2  ESGF的元数据内容
Fig.7  ESGF 信息仪表盘架构
Fig.8  不同国家CMIP6数据节点的数据下载平均速度
[1] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456.
Zhou T J, Zou L W, Chen X L. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456.
[2] Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5):1937-1958.
doi: 10.5194/gmd-9-1937-2016
[3] 赵宗慈, 罗勇, 黄建斌. CMIP6的设计[J]. 气候变化研究进展, 2016, 12(3):258-260.
Zhao Z C, Luo Y, Huang J B. Design of CMIP6[J]. Climate Change Research, 2016, 12(3):258-260.
[4] 马强, 颜京辉, 魏敏, 等. 北京气候中心CMIP6数据共享平台及应用[J]. 应用气象学报, 2022, 33(5):617-627.
Ma Q, Yan J H, Wei M, et al. Implementation and application of BCC CMIP6 experimental data sharing platform[J]. Journal of Applied Meteorological Science, 2022, 33(5):617-627.
[5] Balaji V, Taylor K E, Juckes M, et al. Requirements for a global data infrastructure in support of CMIP6[J]. Geoscientific Model Development, 2018, 11(9):3659-3680.
doi: 10.5194/gmd-11-3659-2018
[6] Cinquini L, Crichton D, Mattmann C, et al. The Earth System Grid Federation:An open infrastructure for access to distributed geospatial data[J]. Future Generation Computer Systems, 2014,36:400-417.
[7] Williams D N, Taylor K E, Cinquini L, et al. The Earth System Grid Federation:Software Framework Supporting CMIP5 Data Analysis and Dissemination[J]. CLIVAR Exchanges, 2011, 16(2):40-42.
[8] Petrie R, Denvil S, Ames S, et al. Coordinating an operational data distribution network for CMIP6 data[J]. Geoscientific Model Development, 2021, 14(1):629-644.
doi: 10.5194/gmd-14-629-2021
[9] Climate Europe. European Earth System Modelling for Climate Services[EB/OL]. https://www.climateurope.eu/european-earth-system-modelling-for-climate-services/ (Accessed on 24 May 2024).
[10] Earth System Grid Federation, Federation Design. ESGF GitHub Documentation[EB/OL].https://esgf.github.io/federation-design.html.
[11] Balaji V. CPMIP:Measurements of real computational performance of earth system models in CMIP[J]. Future Generation Computer Systems, 2013, 29 (7),1889-1896.
[12] Juckes M, Taylor K E, Durack P J, et al. The CMIP6 data request (DREQ,version 01.00.31)[J]. Geoscientific Model Development, 2020, 13(1):201-224.
doi: 10.5194/gmd-13-201-2020
[13] Stockhause M, Lautenschlager M. CMIP6 data citation of evolving data[J]. Data Science Journal, 2017,16:30.
[14] Pascoe C, Lawrence B N, Guilyardi E, et al. Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Geoscientific Model Development, 2020, 13(5):2149-2167.
doi: 10.5194/gmd-13-2149-2020
[15] Stall S, Yarmey L, Cutcher-Gershenfeld J, et al. Make scientific data FAIR[J]. Nature, 2019, 570(7759):27-29.
doi: 10.1038/d41586-019-01720-7
[16] Stockhause M, Lautenschlager M. Data citation in climate sciences:Improvements in CMIP6 compared to CMIP5[J/OL]. AGU Fall Meeting Abstracts, 2017, 42.http://adsabs.harvard.edu/abs/2017AGUFMIN42C.05S.
[17] Durack P J, Taylor K E, Eyring V, et al. A CMIP6-based multi-model outlook on future steric dynamic sea level change[J]. Geoscientific Model Development,14:629-667.
[1] 刘昱甫, 白玉琪. 世界气象组织数据共享体系分析[J]. 自然资源遥感, 2025, 37(6): 1-9.
[2] 刘昱甫, 徐灏, 白玉琪. 北极海冰遥感观测和数值模拟数据的在线协同分析方法研究[J]. 自然资源遥感, 2025, 37(6): 55-63.
[3] 任晓霞, 杨飞, 杨淑云, 殷铭, 喻孟良. “地质云1.0”地质环境分节点技术实现[J]. 国土资源遥感, 2019, 31(4): 250-257.
[4] 郝明, 张建龙, 牛瑞卿, 梁虹. 地质调查信息网格结点建设——以西南地区为例[J]. 国土资源遥感, 2015, 27(4): 195-199.
[5] 王继周, 李成名, 林宗坚. 面向共享的空间元数据管理框架研究与设计[J]. 国土资源遥感, 2003, 15(3): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发