Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1991, Vol. 3 Issue (4) : 30-39     DOI: 10.6046/gtzyyg.1991.04.05
Applied Research |
A PRIMARY STUDY OF THE DARABUT FAULT THROUGH SATELLITE DIGITAL IMAGE
Feng Hongru
Xi an College of Geology
Download: PDF(707 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Darabut fault appeared in the northeast strike across the West Jungger area is regarded as a big multiphase fault with a length of 480 kilometers through the interpretation of satellite digital image and the study of geological character. The Darabut fault does not control the strata of the lower Carboniferous and Precarboniferous Series, only leftlateral breaks can be seen; It obviously controls the strata of the middle Carboniferous and the lower-middle Jurassic ones ; Ultramafite in the Darabut ultrabasic rock is affected by the nappe tectonic, and then it locates in the up side of the Darabut fault. The formation and development of this system resulted from the continuous face-to-face movement of the Talim, Sibelian and Kazakhstanian continental segments after their collision and the early Carboniferous Epoch. As a type of the stress relief form, at the early stage (Triassic period, early and middle Jurassic Epoch) the system was turned into the plough-shaped faults by the strong nappe structure under the continental diving. At the late stage, it was in the state of extention, thus showing that the hanging wall went down. So the clear fault geomorphologic expression has been formed at pre-sent.

Keywords Atmosphere and humidity profiles      Retrieval methods      Sensor     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ying
HUANG Yong
HUANG Si-Yuan
LI Hong-Xiang
LIN Gao-Yuan
Cite this article:   
WANG Ying,HUANG Yong,HUANG Si-Yuan, et al. A PRIMARY STUDY OF THE DARABUT FAULT THROUGH SATELLITE DIGITAL IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 1991, 3(4): 30-39.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1991.04.05     OR     https://www.gtzyyg.com/EN/Y1991/V3/I4/30


[1] 新疆地质局地质科学研究所,1979年,新疆超基性岩与铬铁矿

[2] 冯益民等,1983年,北疆西部构造发展史。中国北方板块构造文集,第一集

[3] 陈礼御,1983年,克拉玛依地区各大地构造发展阶段所形成的构造特征。中国科学院长沙大地构造研究所专刊, 第1号,北卿大地构造与油气。

[4] 冯益民。1985年,西准噶尔优地槽摺皱带沉积建造特征及其多旋迥发展。中国地质科学院西安地质科学研究所所刊,第10号。

[5] 尤绮妹,1983年,准噶尔盆地西北缘推覆构造研究。新疆石油地质,第1期。

[6] 冯鸿儒,1988年,根据卫星图像影像特征发现的吉木乃—乌伦古河断裂及其地质意义。遥感地质,1988, 2

[7] 郑光华、李树滋,1984年,新疆扎伊尔推覆体的初步研究。地质科技通报,第4期

[8] 冯鸿儒、李旭等,准噶尔海槽西准噶尔地段板块构造演化特征。西安地质学院学报,1988, 10( 3)

[9] 李旭、冯鸿儒等,新疆西准噶尔推覆构造初探。中国北方板块构造论文集,北京: 地质出版社,1987(2)

[1] Xiang LI, Cankun YANG, Chunping ZHOU, Xiaojuan LI, Ke ZHANG. A review of target motion information extraction from high-resolution optical satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 1-9.
[2] LIU Zihan, WU Yanlan. A review of cloud detection methods in remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 6-7.
[3] DU Weina, XU Aigong, SONG Yaoxin, SUN Huasheng. Absolute radiometric calibration of level-1 detected ground range products of new SAR sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 30-34.
[4] LIU Rongjie, ZHANG Jie, LI Xiaomin, MA Yi. Position precision evaluation of ZY-3 satellite image in the coastal zone of China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 141-145.
[5] SONG Yan, FAN Gaojing, ZUO Jia. Adjustment model for remote sensing images with high spatial resolution from multi-sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 21-26.
[6] LIU Bin, SUN Xi-liang, DI Kai-chang, LIU Zhao-qin. Accuracy Analysis and Validation of ZY-3’s Sensor Corrected Products[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 36-40.
[7] ZHU Xiao-Yong, ZHANG Guo, QIN Xu-wen. THE FORMULATION OF RPC FOR DOMESTIC
OPTICAL SATELLITE IMAGERY
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(2): 32-34.
[8] QIU Zhen-Ge, YUE Qing-Xing, ZHANG Chun-Ling, ZHOU Qiang, JIA Yong-Hong. THE MTF NUMERICAL SIMULATION OF TDICCD ON-ORBIT IMAGING QUALITY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 13-17.
[9] QIU Zhen-Ge, GAN Fu-Ping, YOU Shu-Cheng, YUE Qing-Xing, ZHANG Chun-Ling, JIA Yong-Hong. THE SIMULATOR FRAMEWORK OF DYNAMIC IMAGING OF THE 02B HR OPTICAL REMOTE SENSOR BASED ON LAND AND RESOURCES MANAGEMENT APPLICATION ASSESSMENT[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 18-22.
[10] WANG Ying, HUANG Yong, HUANG Si-Yuan. A PRELIMINARY STUDY OF THE RETRIEVAL METHODS FOR ATMOSPHERE AND HUMIDITY PROFILES[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(1): 23-26.
[11] ZHONG Yao-Wu, LIU Liang-Yun, WANG Ji-Hua, YAN Guang-Jian. THE APPLICATION OF SCS+C METHODS FOR TOPOGRAPHIC RADIATION CORRECTION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 14-18.
[12] ZHONG Ruo-fei, GUO Hua-dong, WANG Wei-min, ZHU Bo-qin. DATA PROCESSING AND PERFORMANCE EVALUATION OF THE MICROWAVE RADIOMETER CARRIED BY SHENZHOU 4[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(4): 19-22,32.
[13] ZHANG Zong-gui, WANG Run-sheng, GUO Xiao-fang, GUO Da-hai, TIAN Qing-jiu, GAN Fu-ping, YANG Su-ming . APPLICATION IN THE BAND SELECTION OF SENSOR POST-CONTINNUED RESOURCES SATELLITE USING SPECTRAL CHARACTERISTICS OF MINERALS AND ROCKS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 16-20.
[14] YU Wu-yi, QI Xiao-ping, ZOU Li-qun . EVALUATION OF MULTI-SENSOR REMOTE SENSING DATA APPLIED OIL AND GAS EXPLORATION IN THE LOESS HIGHLANDS, ORDOS PLATEAU, CHINA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2000, 12(4): 34-38.
[15] Zhang Yibin, Qu Jiahui. REMOTE SENSING TECHNIQUE DEVELOPMENT AND ITS GEOLOGICAL APPLICATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech