Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1997, Vol. 9 Issue (3) : 46-50     DOI: 10.6046/gtzyyg.1997.03.08
Technology and Methodology |
USING THE MODEL OF SELF-ORGANIZED NEURAL TREE TO THE CLASSIFICATION OF FORESTLANDS
Quan Zhijie, Li Yuanke, Lu Heng
Dept of Forestry Northwest Forestry College, Yangling Shanxi 712100
Download: PDF(251 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Through the information of forestlands obtained from remote sensing pictures of 692 land patches, this paper has studied the forestlands classification in the method of self-organizing neural tree model under the support of GIS. The results show that this method of classification has so many advantages, such as speed, accuracy and tolerence.
Keywords  Radarsat SAR      Forest stock volume estimation      Tree height      Diameter at breast height      Backscatter coefficient     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chen-Li
NIU Zheng
GUO Zhi-Xin
CONG Pi-Fu
DENG Xiao-Lian
FENG Lin-Gang
ZHANG Suo-Xiang
MENG Kui-Wen
Cite this article:   
WANG Chen-Li,NIU Zheng,GUO Zhi-Xin, et al. USING THE MODEL OF SELF-ORGANIZED NEURAL TREE TO THE CLASSIFICATION OF FORESTLANDS[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(3): 46-50.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1997.03.08     OR     https://www.gtzyyg.com/EN/Y1997/V9/I3/46


[1] 徐冠华主编.三北防护林地区再生资源遥感的理论及其技术应用.北京:中国林业出版社,1994



[2] 全志杰,宜川县森林立地条件遥感调查与制图.见《陕北黄土高原地区遥感应用研究》.北京:科学出版社,1991



[3] Li. T, Fang. T and Li. K. Q. Hierarchical Classification and vector quantization with neural network trees. Neturcomputing,

1993.5(2-3)
[1] WANG Chen-Li, NIU Zheng, GUO Zhi-Xin, CONG Pi-Fu, DENG Xiao-Lian. A STUDY ON FOREST BIOPHYSICAL PARAMETER IMPACT
ON RADAR SIGNATURE AND EXTRACTION OF FOREST
STOCK VOLUME BY MEANS OF RADARSAT-SAR
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(2): 24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech