Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 136-143     DOI: 10.6046/gtzyyg.2016.01.20
Technology Application |
Typical applications of airborne LiDAR technique in geological investigation
XIAO Chunlei1,2, GUO Zhaocheng1, ZHENG Xiongwei1, LIU Shengwei1, SHANG Boxuan1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Land and Resources, Beijing 100083, China
Download: PDF(18276 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

As a new kind of active earth-observation system, the technique of airborne light detection and ranging (LiDAR) can acquire accurate three-dimensional coordinates on the surface,and construct the real digital terrain model to provide the direct observation data for the landscape analysis in geological domain. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface collapse,landslide and fault structure extraction. It is shown that airborne LiDAR technology is becoming an indispensable tool for above-mentioned issues, especially in the local and large scale investigations of micro-topography. The technology can not only identify the surface collapse, landslide boundary and subtle faulted landform but also extract the filling parameters,the geomorphic parameters of landslide stability evaluation and cracks,thus having extensive application prospect in geological investigation.

Keywords Beijing-1 micro satellite(BJ-1)      multi-exposure      image quality      snow cover extraction     
:  TP79  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Fuli
XU Jianguo
LU Zhihong
Cite this article:   
YAN Fuli,XU Jianguo,LU Zhihong. Typical applications of airborne LiDAR technique in geological investigation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 136-143.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.20     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/136

[1] Ackermann F.Airborne laser scanning-present status and future expectations[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):64-67.

[2] Axelsson P.Processing of laser scanner data-algorithms and applications[J].SPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):138-147.

[3] 肖春蕾,郭兆成,张宗贵,等.利用机载LiDAR数据提取与分析地裂缝[J].国土资源遥感,2014,26(4):111-118.doi:10.6046/gtzyyg.2014.04.18. Xiao C L,Guo Z C,Zhang Z G,et al.Extraction and analysis of ground fissures from airborne LiDAR data[J].Remote Sensing for Land and Resources,2014,26(4):111-118.doi:10.6046/gtzyyg.2014.04.18.

[4] 刘静,陈涛,张培震,等.机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J].科学通报,2013,58(1):41-45. Liu J,Chen T,Zhang P Z,et al.Illuminating the active Haiyuan fault,China by airborne light detection and ranging[J].Chinese Science Bulletin,2013,58(1):41-45.

[5] 马洪超.激光雷达测量技术在地学中的若干应用[J].地球科学(中国地质大学学报),2011,36(2):347-354. Ma H C.Review on applications of LiDAR mapping technology to geosciences[J].Earth Science-Journal of China University of Geosciences,2011,36(2):347-354.

[6] Harding D,Johnson S,Haugerud R.Folding and rupture of an uplifted Holocene marine platform in the Seattle fault zone,Washington,revealed by airborne laser swath mapping[J].Geological Society of American Bulletin,2002,34:107.

[7] Prentice C S,Mann P,Crone A J,et al.Seismic hazard of the Enriquillo-Plantain Garden fault in Haiti inferred from palaeoseismology[J].Nature Geoscience,2010,3:789-793.

[8] Cunningham D,Grebby S,Tansey K,et al.Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain,southeastern Alps,Slovenia[J].Geophysical Research Letters,2006,33(20):L20308.

[9] Lin Z,Kaneda H,Mukoyama S,et al.Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J].Geomorphology,2013,182:104-115.

[10] Frankel K L,Dolan J F.Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J].Journal of Geophysical Research,2007,112:F02025.

[11] Zielke O,Arrowsmith J R,Ludwig L G,et al.Slip in the 1857 and earlier large earthquakes along the Carrizo Plain,San Andreas Fault[J].Science,2010,327(5969):1119-1122.

[12] Salisbury J B,Rockwell T K,Middleton T J,et al.LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto Fault[J].Bulletin of the Seismological Society of America,2012,102(2):598-619.

[13] Dietrich W E,Bellugi D,de Asua R R.Validation of the shallow landslide model,SHALSTAB,for forest management[C]//Land Use and Watersheds:Human Influence on Hydrology and Geomorphology in Urban and Forest Areas.American Geophysical Union,2001:195-227.

[14] Schulz W H.Landslide susceptibility revealed by LiDAR imagery and historical records,Seattle, Washington[J].Engineering Geology,2007,89(1/2):67-87.

[15] Li D R.Remote sensing in the Wenchuan earthquake[J].Photogrammetric Engineering and Remote Sensing,2009,75:506-509.

[16] 姚巍,赵其华,李坛,等.四川省盐源县地质灾害分布特征与形成条件研究[J].地质灾害与环境保护,2008,19(1):48-51. Yao W,Zhao Q H,Li T,et al.Characteristics of geology hazards distribution and formation conditions in Yanyuan Country,Sichuan Province[J].Journal of Geological Hazards and Environment Preservation,2008,19(1):48-51.

[17] 吴清海.基于TIN的土方计算在地面沉降预测中的应用[J].测绘通报,2009(9):15-17,61. Wu Q H.Application of the earth-volume calculation in surface subsidence forecast based on TIN[J].Bulletin of Surveying and Mapping,2009(9):15-17,61.

[18] 李显巨.基于LiDAR技术的复杂地质环境区滑坡识别研究[D].武汉:中国地质大学(武汉),2012. Li X J.Research of the Landslide Recognition Based on LiDAR Technology in the Complex Geological Environmental Area[D].Wuhan:China University of Geosciences(Wuhan),2012.

[19] 陈理,胡光道,唐晨.遥感技术在鹤庆北衙金矿找矿中的应用[J].东华理工大学学报:自然科学版,2011,34(4):366-373. Chen L,Hu G D,Tang C.Gold deposits in Heqing from remotely sensed data[J].Journal of East China Institute of Technology:Natural Science,2011,34(4):366-373.

[1] YAN Fuli, XU Jianguo, LU Zhihong. Characteristics of multi-exposure images of BJ-1 intelligent micro satellite and its applications to snow cover extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 28-34.
[2] LI Lin, LUO Heng, TANG Xinming, LI Zhen. Characteristic analysis and quality assessment of ZY-3 multi-spectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 17-24.
[3] YI Ling, WANG Xiao, LIU Bin. RESEARCHES ON HJ-1 SATELLITE IMAGE QUALITY
AND LAND USE CLASSIFICATION PRECISION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 74-77.
[4] QIU Zhen-Ge, YUE Qing-Xing, ZHANG Chun-Ling, ZHOU Qiang, JIA Yong-Hong. THE MTF NUMERICAL SIMULATION OF TDICCD ON-ORBIT IMAGING QUALITY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 13-17.
[5] QIU Zhen-Ge, GAN Fu-Ping, YOU Shu-Cheng, YUE Qing-Xing, ZHANG Chun-Ling, JIA Yong-Hong. THE SIMULATOR FRAMEWORK OF DYNAMIC IMAGING OF THE 02B HR OPTICAL REMOTE SENSOR BASED ON LAND AND RESOURCES MANAGEMENT APPLICATION ASSESSMENT[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 18-22.
[6] Jia Yonghong, Li Deren . COMPARISON OF IHS TRANSFORMATION FOR INTEGRATING SAR AND TM IMAGES[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(3): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech