Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 217-223     DOI: 10.6046/gtzyyg.2017.03.32
|
Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia
LI Feng1, 2, LIANG Handong1, ZHAO Xiaoping3, BAI Jiangwei1, CUI Yukun1
1. State Key Lab of Coal Resources and Safety Mining, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Institute of Disaster Prevention, Sanhe 065201, China;
3. Beijing Polytechnic College, Beijing 100042, China
Download: PDF(6248 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to assess the fire-fighting effects in the Wuda coal field of Inner Mongolia, the authors adopted two Landsat 5 images(acquired in 2008 and 2011)and two Landsat 8 images(acquired in 2013 and 2015)as data sources which respectively represented before, during and last stage fire-fighting activities, generated four land surface temperature maps by using mono-window algorithm and recognized coal fire areas based on self-adaptive gradient-based thresholding(SAGBT)method. The results show that 75% overlapping between identified coal fire areas and in situ sampling coal fire areas. The coal fire evolutions on spatial distribution revealed that coal fire area presented remarkable downfall trend from 1.194 km2 in 2008 to 0.873 km2 in 2015. Overall, coal fire areas were reduced by 26.88% due to performing fire-fighting activities; however, more measures should be strengthened by local administrators because there remain residual 73.12% coal fire areas.
Keywords coalfield fire area      temperature retrieve      temperature anomaly      delineate coal fire range      magnetic prospecting     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chunsen
XU Xiaolei
CHEN Yuefeng
Cite this article:   
ZHANG Chunsen,XU Xiaolei,CHEN Yuefeng. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 217-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.32     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/217
[1] Kuenzer C,Stracher G B.Geomorphology of coal seam fires[J].Geomorphology,2012,138(1):209-222.
[2] 邵振鲁,王德明,王雁鸣.煤田火灾探测方法研究进展[J].煤矿安全,2012,43(8):189-192.
Shao Z L,Wang D M,Wang Y M.Research progress of coalfield fire detection method[J].Safety in Coal Mines,2012,43(8):189-192.
[3] 蒋卫国,武建军,顾 磊,等.基于遥感技术的乌达煤田火区变化监测[J].煤炭学报,2010,35(6):964-968.
Jiang W G,Wu J J,Gu L,et al.Change monitoring in Wuda coalfield fire area based on remote sensing[J].Journal of China Coal Society,2010,35(6):964-968.
[4] 邱程锦,王 坚,刘立聪,等.遥感技术在乌达煤田火灾监测中的应用[J].煤炭工程,2012(8):130-133.
Qiu C J,Wang J,Liu L C,et al.Remote sensing technology applied to fire disaster monitoring and measuring of Wuda coalfield[J].Coal Engineering,2012(8):130-133.
[5] Huo H Y,Ni Z Y,Gao C X,et al.A study of coal fire propagation with remotely sensed thermal infrared data[J].Remote Sensing,2015,7(3):3088-3113.
[6] 曹代勇,杨 光,豆旭谦,等.基于遥感技术的内蒙古乌达煤田火区碳排放计算[J].煤炭学报,2014,39(12):2489-2494.
Cao D Y,Yang G,Dou X Q,et al.Calculation of carbon emission of Wuda coalfield fires in Inner Mongolia based on remote sensing technology[J].Journal of China Coal Society,2014,39(12):2489-2494.
[7] 孙玉林,马建伟,张国荣.航空三通道扫描技术在乌达煤田火区调查中的应用[J].神华科技,2010,8(4):21-24.
Sun Y L,Ma J W,Zhang G R.Application of three aerial channels scanning technology in Wuda coalfield[J].Shen Hua Science and Technology,2010,8(4):21-24.
[8] Wang Y J,Tian F,Huang Y,et al.Monitoring coal fires in Datong coalfield using multi-source remote sensing data[J].Transactions of Nonferrous Metals Society of China,2015,25(10):3421-3428.
[9] 徐涵秋.新型Landsat 8卫星影像的反射率和地表温度反演[J].地球物理学报,2015,58(3):741-747.
Xu H Q.Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J].Chinese Journal of Geophysics,2015,58(3):741-747.
[10] Yu X L,Guo X L,Wu Z C.Land surface temperature retrieval from Landsat 8 TIRS-comparison between Radiative Transfer Equation-based method,Split Window Algorithm and Single Channel Method[J].Remote Sensing,2014,6(10):9829-9852.
[11] 姬洪亮,塔西甫拉提·特依拜,蔡忠勇,等.基于TM数据的地下煤火区地表温度反演与验证[J].国土资源遥感,2012,24(4):101-106.doi:10.6046/gtzyyg.2012.04.17"> doi:10.6046/gtzyyg.2012.04.17.
Ji H L,Tashpolat T,Cai Z Y,et al.The inversion and verification of land surface temperature for coal fire areas based on TM data[J].Remote Sensing for Land and Resources,2012,24(4):101-106.doi:10.6046/gtzyyg.2012.04.17"> doi:10.6046/gtzyyg.2012.04.17.
[12] Wang F,Qin Z H,Song C Y,et al.An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data[J].Remote Sensing,2015,7(4):4268-4289.
[13] Kuenzer C,Zhang J,Li J,et al.Detecting unknown coal fires:Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction[J].International Journal of Remote Sensing,2007,28(20):4561-4585.
[14] Du X M,Bernardes S,Cao D Y,et al.Self-adaptive gradient-based thresholding method for coal fire detection based on ASTER data-Part 2,validation and sensitivity analysis[J].Remote Sensing,2015,7(3):2602-2626.
[15] 蒋大林,匡鸿海,曹晓峰,等.基于Landsat 8的地表温度反演算法研究——以滇池流域为例[J].遥感技术与应用,2015,30(3):448-454.
Jiang D L,Kuang H H,Cao X F,et al.Study of land surface temperature retrieval based on Landsat 8:With the sample of Dianchi lake basin[J].Remote Sensing Technology and Application,2015,30(3):448-454.
[16] 胡德勇,乔 琨,王兴玲,等.单窗算法结合Landsat 8热红外数据反演地表温度[J].遥感学报,2015,19(6):964-976.
Hu D Y,Qiao K,Wang X L,et al.Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm[J].Journal of Remote Sensing,2015,19(6):964-976.
[17] 丁莉东,覃志豪,毛克彪.基于MODIS影像数据的劈窗算法研究及其参数确定[J].遥感技术与应用,2005,20(2):284-289.
Ding L D,Qin Z H,Mao K B.A research of split window algorithm based on MODIS image data and parameter determination[J].Remote Sensing Technology and Application,2005,20(2):284-289.
[18] Zanter K.Landsat 8(L8) Data Users Handbook V1[Z].Sioux Falls,South Dakota:U.S.Geological Survey,2015.
[19] 覃志豪,李文娟,徐 斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,16(3):28-32,36,41.doi:10.6046/gtzyyg.2004.03.07"> doi:10.6046/gtzyyg.2004.03.07.
Qin Z H,Li W J,Xu B,et al.The estimation of land surface emissivity for Landsat TM6[J].Remote Sensing for Land and Resources,2004,16(3):28-32,36,41.doi:10.6046/gtzyyg.2004.03.07"> doi:10.6046/gtzyyg.2004.03.07.
[20] Rozenstein O,Qin Z H,Derimian Y,et al.Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J].Sensors,2014,14(4):5768-5780.
[21] Du X M,Cao D Y,Mishra D,et al.Self-adaptive gradient-Based thresholding method for coal fire detection using ASTER thermal infrared data,Part I:Methodology and decadal change detection[J].Remote Sensing,2015,7(6):6576-6610.
[1] ZHANG Chunsen, XU Xiaolei, CHEN Yuefeng. Temperature anomaly information extraction in coalfield fire area based on ETM+ data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 201-206.
[2] HUANG Zhao-Quan, ZHANG Deng-Rong, WANG Fan, DANG Fu-Xing, LI Zhi-Zhong. Differential SAR Interferometry for the Monitoring of Underground Coal Spontaneous Combustion Zone Surface Deformation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 85-90.
[3] HU Shu-Jing, HU De-Yong, LI Xiao-Juan, WANG Rong-Hua. AN REMOTE SENSING-BASED ANALYSIS OF THE THERMAL ENVIRONMENT SPATIAL PATTERN
OF BEIJING-TIANJIN-HEBEI METROPOLITAN CIRCLE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech