Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 29-37     DOI: 10.6046/gtzyyg.2018.02.04
|
An improved CVAPS method for automatic updating of LUCC classification
Xinran ZHU(), Bo WU(), Qiang ZHANG
Key Laboratory of Spatial Data Mining and Information Sharing, Ministry of Education, Fujian 350000, China
Download: PDF(3299 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The method of change vector analysis in posterior probability space(CVAPS) does not take into consideration the correlation between the bands of remote sensing image, which may result in unreliable change detection. In view of such a situation, the authors introduced multivariate change detection(MAD)method and, in combination with CVAPS, proposed an improved method for automatic updating of land use / cover change(LUCC) classification. The method firstly introduces MAD to reduce bands-correlation for improving the reliability of train-samples and accordingly improving LUCC updating maps, and then included an iterative Markov random field(IR-MRF)model to fully employ the contextual information in post-processing to reduce the noise of “salt-and-pepper”. Choosing Changting County of Fujian Province as the study area, the authors used Landsat5 TM and Landsat8 OLI data acquired in 2003 and 2013 respectively, and took OLI as the base image to update the classification map in 2003. The experimental results show that the proposed method significantly outperforms the CVAPS in that its overall accuracy could reach 80% with the improvement rate being about 3%.

Keywords land use/cover change(LUCC)      automatic updating      multivariate change detection(MAD)      change vector analysis in posterior probability space(CVAPS)      iterative Markov random field(IR-MRF)model     
:  TP751.1  
Corresponding Authors: Bo WU     E-mail: 1161336850@qq.com;wavelet778@sohu.com
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinran ZHU
Bo WU
Qiang ZHANG
Cite this article:   
Xinran ZHU,Bo WU,Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.04     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/29
Fig.1  Flow chart for automatic updating of LUCC
Fig.2  Original remote sensing images and references classification map of study area
Fig.3  Automatic updating of LUCC classification results
地表覆盖类别 变化像元 未变化像元 样本总量
植被 784 1 292 2 076
农田 710 351 1 061
水体 0 412 412
居民地 52 490 542
裸地 763 189 952
合计 2 309 2 734 5 043
  
分类类别 参考类别 合计 用户精度/ %
植被 农田 水体 居民地 裸地
植被 1 494 89 5 9 137 1 734 86.16
农田 6 779 0 31 105 921 84.58
水体 0 0 401 0 7 408 98.28
居民地 0 96 0 501 1 598 83.78
裸地 576 97 6 1 702 1 382 50.80
合计 2 076 1 061 412 542 952 5 043
制图精度/ % 71.96 73.42 97.33 92.44 73.74
总体精度= 76.76%,Kappa = 0.691
Tab.2  Confusion matrix of CVAPS classification
分类类别 参考类别 合计 用户精度/ %
植被 农田 水体 居民地 裸地
植被 1 608 88 5 9 115 1 825 88.10
农田 6 795 6 31 90 928 85.67
水体 0 0 395 0 6 401 98.50
居民地 0 81 0 501 0 582 86.08
裸地 462 97 6 1 741 1 307 56.70
合计 2 076 1 061 412 542 952 5 043
制图精度/ % 77.46 74.93 95.88 92.44 77.84
总体精度= 80.11%,Kappa = 0.733
Tab.3  Comfusion matrix of classification using method proposed in this paper
Fig.4  Comparison among three kinds of change detection results
像元数量 真实结果
未变化像元 变化像元 合计 错分误差/%
分类结果 未变化像元 2 272 462 2 734 16.90
变化像元 399 1 910 2 309 17.28
合计 2 671 2 372 5 043
漏分误差/% 14.94 19.48
总体精度= 82.92%, Kappa= 0.656
Tab.4  Results of changed/ unchanged pixels detected by MAD
像元数量 真实结果
未变化像元 变化像元 合计 错分误差/%
分类结果 未变化像元 2 701 33 2 734 1.21
变化像元 911 1 398 2 309 39.45
合计 3 612 1 431 5 043
漏分误差/% 25.22 2.30
总体精度= 81.28%, Kappa=0 .611
Tab.5  Results of changed/ unchanged pixels detected by CVAPS
像元数量 真实结果
未变化像元 变化像元 合计 错分误差/%
分类结果 未变化像元 2 287 447 2 734 16.35
变化像元 365 1 944 2 309 15.81
合计 2 652 2 391 5 043
漏分误差/% 13.76 18.69
总体精度= 83.90%, Kappa= 0.674
Tab.6  Results of changed/ unchanged pixels detected by method proposed in this paper
Fig.5  Curves of iterative times and consistency ratio
Fig.6  Result of automatic updating and classification improved by IR-MRF model
Fig.7  Histogram for precision comparison between IR-MRF model used and unused
[1] Turner II B L,Skole D L,Sanderson S,et al. Land-Use and Land-Cover Change Science/Research Plan[R].Stockholm,Geneva:[s.n.], 1995.
[2] 李秀彬 . 全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J]. 地理学报, 1996,51(6):553-558.
[2] Li X B . A review of the international researches on land use/land cover change[J]. Acta Geographica Sinica, 1996,51(6):553-558.
[3] 王秀兰, 包玉海 . 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999,18(1):81-87.
doi: 10.3969/j.issn.1007-6301.1999.01.012 url: http://d.wanfangdata.com.cn/Periodical/dlkxjz199901012
[3] Wang X L, Bao Y H . Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999,18(1):81-87.
[4] Turner II B L,Meyer W B,Skole D L. Global land-use/land-cover change:Towards an integrated study[J]. Ambio, 1994,23(1):91-95.
doi: 10.1080/02786829408959678 url: http://www.jstor.org/stable/4314168
[5] 孙晓霞, 张继贤, 燕琴 , 等. 遥感影像变化检测方法综述及展望[J]. 遥感信息, 2011,26(1):119-123.
doi: 10.3969/j.issn.1000-3177.2011.01.023 url: http://www.cqvip.com/Main/Detail.aspx?id=37250445
[5] Sun X X, Zhang J X, Yan Q , et al. A summary on current techniques and prospects of remote sensing change detection[J]. Remote Sensing Information, 2011,26(1):119-123.
[6] Chen X H, Chen J, Shi Y S , et al. An automated approach for updating land cover maps based on integrated change detection and classification methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,71:86-95.
doi: 10.1016/j.isprsjprs.2012.05.006 url: http://linkinghub.elsevier.com/retrieve/pii/S092427161200086X
[7] Xian G, Homer C, Fry J.Updating the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection methods[J]. Remote Sensing of Environment, 2009,113(6):1133-1147.
doi: 10.1016/j.rse.2009.02.004 url: http://www.cabdirect.org/abstracts/20093156944.html
[8] Xian G, Homer C .Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods[J]. Remote Sensing of Environment, 2010,114(8):1676-1686.
doi: 10.1016/j.rse.2010.02.018 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425710000878
[9] Jin S M, Yang L M, Danielson P , et al.A comprehensive change detection method for updating the national land cover database to circa 2011[J].Remote Sensing of Environment, 2013,132:159-175.
doi: 10.1016/j.rse.2013.01.012 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425713000242
[10] Chen J, Chen X H, Cui X H , et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(2):317-321.
doi: 10.1109/LGRS.2010.2068537 url: http://ieeexplore.ieee.org/document/5597922/
[11] 张路 . 基于多元统计分析的遥感影像变化检测方法研究[D]. 武汉:武汉大学, 2004.
[11] Zhang L . Change Detection in Remotely Sensed Imagery Using Multivariate Statistical Analysis[D]. Wuhan: Wuhan University, 2004.
[12] 盛辉, 廖明生, 张路 . 基于典型相关分析的变化检测中变化阈值的确定[J]. 遥感学报, 2004,8(5):451-457.
doi: 10.3321/j.issn:1007-4619.2004.05.011 url: http://www.cqvip.com/qk/92457A/200405/10332896.html
[12] Sheng H, Liao M S, Zhang L . Determination of threshold in change detection based on canonical correlation analysis[J]. Journal of Remote Sensing, 2004,8(5):451-457.
[13] 廖明生, 朱攀, 龚健雅 . 基于典型相关分析的多元变化检测[J]. 遥感学报, 2000,4(3):197-201,246.
doi: 10.11834/jrs.20000307
[13] Liao M S, Zhu P, Gong J Y . Multivariate change detection based on canonical transformation[J]. Journal of Remote Sensing, 2000,4(3):197-201,246.
[14] Nielsen A A, Conradsen K, Simpson J J . Multivariate alteration detection(MAD) and MAF postprocessing in multispectral,bitemporal image data:New approaches to change detection studies[J]. Remote Sensing of Environment, 1998,64(1):1-19.
doi: 10.1016/S0034-4257(97)00162-4 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425797001624
[15] Nielsen A A . The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007,16(2):463-478.
doi: 10.1109/TIP.2006.888195 pmid: 17269639 url: http://ieeexplore.ieee.org/document/4060945/
[16] Kapur J N, Sahoo P K, Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision,Graphics,and Image Processing, 1985,29(3):273-285.
doi: 10.1016/0734-189X(85)90125-2 url: http://linkinghub.elsevier.com/retrieve/pii/0734189X85901252
[17] Bruzzone L, Prieto D F . Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(3):1171-1182.
doi: 10.1109/36.843009 url: http://ieeexplore.ieee.org/document/843009/
[18] 赵鹏 . 新街台格庙矿区开发初期土地利用动态遥感监测[J]. 国土资源遥感, 2015,27(4):144-149.doi: 10.6046/gtzyyg.2015.04.22.
doi: 10.6046/gtzyyg.2015.04.22
[18] Zhao P . Land use dynamic remote sensing monitoring at the initial stage of exploitation of the Xinjie Taigemiao mining area[J]. Remote Sensing for Land and Resources, 2015,27(4):144-149.doi: 10.6046/gtzyyg.2015.04.22.
[19] 国巧真, 宁晓平, 王志恒 , 等. 地形地貌对半山区土地利用动态变化影响分析——以天津市蓟县为例[J]. 国土资源遥感, 2015,27(1):153-159.doi: 10.6046/gtzyyg.2015.01.24.
doi: 10.6046/gtzyyg.2015.01.24 url: http://www.cqvip.com/QK/91397X/201501/663991084.html
[19] Guo Q Z, Ning X P, Wang Z H , et al. Impact analysis of landform for land use dynamic change of the partly mountainous area:A case study of Jixian County in Tianjin City[J]. Remote Sensing for Land and Resources, 2015,27(1):153-159.doi: 10.6046/gtzyyg.2015.01.24.
[20] 李莎, 倪维平, 严卫东 , 等. 基于选权迭代估计与非监督分类的多光谱图像变化检测[J]. 国土资源遥感, 2014,26(4):34-40.doi: 10.6046/gtzyyg.2014.04.06.
doi: 10.6046/gtzyyg.2014.04.06 url: http://www.cqvip.com/QK/91397X/201404/663060360.html
[20] Li S, Ni W P, Yan W D , et al. Change detection of multi-spectral images based on iterative estimation with weight selection and unsupervised classification[J]. Remote Sensing for Land and Resources, 2014,26(4):34-40.doi: 10.6046/gtzyyg.2014.04.06.
[21] 杜培军, 陈宇, 谭琨 . 江苏滨海湿地土地利用/覆盖变化与地表温度响应遥感监测[J]. 国土资源遥感, 2014,26(2):112-120.doi: 10.6046/gtzyyg.2014.02.19.
doi: 10.6046/gtzyyg.2014.02.19
[21] Du P J, Chen Y, Tan K . The remote sensing monitoring of land use/cover change and land surface temperature responses over the coastal wetland in Jiangsu[J]. Remote Sensing for Land and Resources, 2014,26(2):112-120.doi: 10.6046/gtzyyg.2014.02.19.
[22] 孙雷刚, 刘剑锋, 徐全洪 . 河北坝上地区植被覆盖变化遥感时空分析[J]. 国土资源遥感, 2014,26(1):167-172.doi: 10.6046/gtzyyg.2014.01.28.
doi: 10.6046/gtzyyg.2014.01.28 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201401028
[22] Sun L G, Liu J F, Xu Q H . Remote Sensing based temporal and spatial analysis of vegetation cover changes in Bashang Area of Hebei Province[J]. Remote Sensing for Land and Resources, 2014,26(1):167-172.doi: 10.6046/gtzyyg.2014.01.28.
[1] DU Peijun, CHEN Yu, TAN Kun. The remote sensing monitoring of land use/cover change and land surface temperature responses over the coastal wetland in Jiangsu[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech