Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 195-203     DOI: 10.6046/gtzyyg.2019.01.26
|
Soil salinization monitoring based on Radar data
Juan FENG1,2, Jianli DING1,2(), Wenyu WEI1,2
1.Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi 830046, China
2.Jimsar County Meteorological Bureau, Changji 831700, China
Download: PDF(11741 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With Weiku oasis in Xinjiang as the study area, the authors used two polarization methods, i.e., Freeman-Durden and H/α, to decompose and treat 4-polarization data of the Radarsat-2, got the corresponding characteristic parameters, extracted the salinization information of the study area combined with the SVM-Wishart semi-supervised classification method, and finally checked and analyzed the result of the classification with the visual interpretation and the field investigation. Some conclusions have been reached: ① When the impact categories are identified and the parameter feature space is built to get the characteristic parameters, different polarization decompositions yield different resolutions of parameter information, and the distributions of parameters characteristic space are different; after decomposing with H/α, the characteristic space constituted by characteristic parameters are different; ② The effect of using semi-supervised classification method to classify the endings of the Freeman Durden and H/α,Freeman Durden classification is superior to that of H/a; ③SVM-Wishart semi-supervised classification is superior to traditional SVM classification and hence it can be well used to extract the salinization information. SVM-Wishart semi-supervised classification can fully excavate the characteristic parameters after the coherent decomposition of polarization and can improve the classification accuracy, and it has certain advantages in the extraction of salinization information.

Keywords soil salinization      polarization decomposition      Radarsat-2 data      SVM-Wishart classification     
:  TP79  
Corresponding Authors: Jianli DING     E-mail: ding_jl@163.com
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juan FENG
Jianli DING
Wenyu WEI
Cite this article:   
Juan FENG,Jianli DING,Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.26     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/195
Fig.1  Location map of study area
参数类型 参数值
极化方式 HH,HV,VH,VV
获取方式 四极化精细
产品类型 SLC
信号中心频率/GHz 5.405
采样间隔/(m×m) 4.73×4.81
空间分辨率/m 8
行列号 2 792,6 139
近距远距入射角/(°) 28~30
测绘带/(km×km) 25×25
天线测试方向 左视,升轨
卫星高度/km 798
Tab.1  Main parameters of fully polarimetric Radarsat-2 data
类别 特征描述 训练样本点数量 验证样本点数量
样本点 像素数 样本点 像素数
水体 河流、水库、水渠和湖泊 56 5 963 55 5 835
农田 植被覆盖度大于30% 60 8 280 62 9 108
重度盐渍地 基本无植被,植被覆盖度约为05% 67 8 764 65 7 791
中轻度盐渍地 有盐生植被,植被覆盖度约为5%25% 52 1 482 53 1 570
裸地 戈壁和荒漠 64 10 499 63 10 286
  
  
目标分解方法 极化参数 物理描述
H/α H,α,A 散射熵(entropy)、平均散射角、反熵(anisotropy)
λ1,λ2,λ3 相干矩阵特征值
Freeman-Durden Ps,Pd,Pv 单次散射、二次散射、体散射
fs,fd,fv Freeman-Durden分解系数
Tab.3  Scattering matrix decomposition parameters
Fig.3  Parameters of polarization decomposition
Fig.4  Parameters space construction
Fig.5  Feature space of H-α
Fig.6  SVM-Wishart classification results
类别 H/α分解SVM-Wishart分类 Freeman-Durden分解SVM-Wishart分类 Freeman-Durden分解SVM分类
生产者精度/% 用户精度/% 生产者精度/% 用户精度/% 生产者精度/% 用户精度/%
水体 87.99 70.60 78.41 87.33 84.58 58.86
农田 95.57 99.22 99.62 99.72 83.57 83.37
重度盐渍地 77.24 56.86 92.41 71.28 58.42 54.17
中轻度盐渍地 87.59 66.85 97.18 72.45 58.27 65.76
裸地 65.25 83.23 87.89 78.60 86.87 84.85
总体精度/% 78.96 88.00 70.82
Kappa系数 0.71 0.83 0.62
Tab.4  Precision validation of monitoring accuracy of salinized soil information
[1] 丁建丽, 姚远, 王飞 , 等. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014,34(16):4620-4631.
doi: 10.5846/stxb201212291895 url: http://www.cnki.com.cn/Article/CJFDTotal-STXB201416019.htm
[1] Ding J L, Yao Y, Wang F , et al. Detecting soil salinization in arid regions using spectralfeature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014,34(16):4620-4631.
[2] Muyen Z, Moore G A, Wrigley R J . Soil salinity and sodicity effects of wastewater irrigation in South East Australia[J]. Agricultural Water Management, 2011,99(1):33-41.
doi: 10.1016/j.agwat.2011.07.021 url: https://linkinghub.elsevier.com/retrieve/pii/S0378377411001880
[3] Wang H, Jia G . Satellite-based monitoring of decadal soil salinization and climate effects inasemi-arid region of China[J]. Advances in Atmospheric Sciences, 2012,29(5):1089-1099.
doi: 10.1007/s00376-012-1150-8 url: http://link.springer.com/10.1007/s00376-012-1150-8
[4] 曹雷, 丁建丽, 于海洋 . 渭—库绿洲多尺度景观格局与盐度关系[J]. 农业工程学报, 2016,32(3):101-110.
doi: 10.11975/j.issn.1002-6819.2016.03.015 url: http://d.wanfangdata.com.cn/Periodical/nygcxb201603016
[4] Cao L, Ding J L, Yu H Y . Relationship between multi-scale landscape pattern and salinity in Weigan and Kuqa Rivers Delta oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):101-110.
[5] Bouksila F, Bahri A, Berndtsson R , et al. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia[J]. Environmental and Experimental Botany, 2013,92(5):176-185.
doi: 10.1016/j.envexpbot.2012.06.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0098847212001402
[6] 吕云海 . 于田绿洲典型区域土壤盐分空间分异规律研究[D]. 乌鲁木齐:新疆大学, 2009.
[6] Lyu Y H . The Research for Spatial Distribution Rules of the Soil Salt of Typical Area in Yutian Oasis[D]. Urumqi:Xinjiang University, 2009.
[7] Farifteh J, Meer F V D, Atzberger Cs, et al. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods(PLSR and ANN)[J]. Remote Sensing of Environment, 2007,110(1):59-78.
doi: 10.1016/j.rse.2007.02.005 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570700082X
[8] Wang H, Hsieh Y P, Harwell M A , et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007,201(3-4):429-439.
doi: 10.1016/j.ecolmodel.2006.10.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0304380006004959
[9] Lonnqvist A, Rauste Y, Molinier M , et al. Polarimetric SAR data in land cover mapping in Boreal Zone[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(10):3652-3662.
doi: 10.1109/TGRS.2010.2048115 url: http://ieeexplore.ieee.org/document/5475228/
[10] Nurmemet I, Ghulam A, Tiyip T , et al. Monitoring soil salinization in Keriya River Basin,Northwestern China using passive reflective and active microwave remote sensing data[J]. Remote Sensing, 2015,7(7):8803-8829.
doi: 10.3390/rs70708803 url: http://www.mdpi.com/2072-4292/7/7/8803
[11] Shi J, Chen K S, Li Q , et al. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. Remote Sensing, 2010,40(12):2674-2686.
doi: 10.1109/TGRS.2002.807003 url: http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1176158
[12] Metternicht G I . Fuzzy classification of JERS-1 SAR data: An evaluation of its performance for soil salinity mapping[J]. Ecological Modelling, 1998,111(1):61-74.
doi: 10.1016/S0304-3800(98)00095-7 url: http://linkinghub.elsevier.com/retrieve/pii/S0304380098000957
[13] Lhissou R, Chokmani K, El Harti A, et al. Soil salinity estimation using RADARSAT 2 polarimetric data in arid and sub-arid regions:Morocco and Tunisia cases[C]// EGU General Assembly Conference.Vienna:EGU, 2013.
[14] Li Y Y, Zhao K, Ding Y L, et al. An empirical method for soil salinity and moisture inversion in west of Jilin[C]// Proceedings of the International Conference on Remote Sensing Environment and Transportation Engineering(RSETE).Nanjing:AISR, 2013: 19-21.
[15] Deng L, Yan Y N, Wang C Z . Improved POLSAR image classification by the use of multi-feature combination[J]. Remote Sensing, 2015,7(4):4157-4177.
doi: 10.3390/rs70404157 url: http://www.mdpi.com/2072-4292/7/4/4157
[16] Qi Z X, Yeh G O, Li X , et al. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012,118:21-39.
doi: 10.1016/j.rse.2011.11.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711003877
[17] 丁建丽, 张飞, 江红南 , 等. 塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2008,31(4):624-632.
url: http://d.wanfangdata.com.cn/Periodical/ghqdl200804022
[17] Ding J L, Zhang F, Jiang H N , et al. Spatial variability of soil conductivity and salt content in the north Tarim Basin:A case study in the delta oasis of Weigen-Kuqa Rivers[J]. Arid Land Geography, 2008,31(4):624-632.
[18] 姚远, 丁建丽, 雷磊 , 等. 干湿季节下基于遥感和电磁感应技术的塔里木盆地北缘绿洲土壤盐分的空间变异性[J]. 生态学报, 2013,33(17):5308-5319.
doi: 10.5846/stxb201205230766 url: http://www.cqvip.com/qk/90772x/201317/46970502.html
[18] Yao Y, Ding J L, Lei L , et al. Monitoring spatial variability of soil salinity in dry and wet seasons in the North Tarim Basin using remote sensing and electromagnetic induction instruments[J]. Acta Ecologica Sinica, 2013,33(17):5308-5319.
[19] 丁建丽, 姚远, 王飞 . 基于三维光谱特征空间的干旱区土壤盐渍化遥感定量研究[J]. 土壤学报, 2013,50(5):853-861.
doi: 10.11766/trxb201212290535 url: http://d.wanfangdata.com.cn/Periodical/trxb201305001
[19] Ding J L, Yao Y, Wang F . Quantitative remote sensing of soil salinization in arid regions based on three dimensional spectrum eigen spaces[J]. Acta Pedologica Sinica, 2013,50(5):853-861.
[20] Allbed A, Kumar L, Aldakheel Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries:Applications in a date palm dominated region[J]. Geoderma, 2014, 230-231(7):1-8.
doi: 10.1016/j.geoderma.2014.03.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706114001372
[21] Cloude S R, Pottier E . An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(1):68-78.
doi: 10.1109/36.551935 url: http://ieeexplore.ieee.org/document/551935/
[22] Lee J S, Grunes M R, Pottier E , et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(4):722-731.
doi: 10.1109/TGRS.2003.819883 url: http://ieeexplore.ieee.org/document/1288367/
[23] Lee J S, Grunes M R . Classification of multi-look polarimetric SAR data based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1992,15(11):2299-2311.
doi: 10.1080/01431169408954244 url: http://ieeexplore.ieee.org/iel2/630/6694/00267879.pdf
[1] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[2] Yali ZHANG, Tashpolat·Teyibai, Ardak·Kelimu, Dong ZHANG, Ilyas·Nuermaimaiti, Fei ZHANG. Estimation model of soil salinization based on Landsat8 OLI image spectrum[J]. Remote Sensing for Land & Resources, 2018, 30(1): 87-94.
[3] GUAN Hong, JIA Keli, ZHANG Zhinan, MA Xin. Research on remote sensing monitoring model of soil salinization based on spectrum characteristic analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 100-104.
[4] LIU Ju, LIAO Jing-juan, SHEN Guo-zhuang. Retrieval of Wetland Vegetation Biomass in Poyang Lake Based on Quad-polarization Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 38-43.
[5] LI Xiao-ming, YANG Jing-song, YU Mei, YANG Qi-yong, LIU Mei-xian. Research on Quantitative Remote Sensing of Soil Salinization in the Arid Area Based on Electromagnetic Induction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 53-58.
[6] LI Hui-Zhi, LI Xin-Guo, WANG Ying. The Monitoring of Dynamic Changes of Soil Salinization in the Downstream
Oasis of the Kaidu River Based on Remote Sensing Technology
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 85-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech