Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 27-32     DOI: 10.6046/gtzyyg.2020227
|
A fast detection method for moving targets in UAV video based on the feature extraction
TAN Xiong(), WANG Jinglei, SUN Yifan
Strategic Support Force Information Engineering University, Zhengzhou 450001, China
Download: PDF(3323 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Aiming at tackling the problem of the low efficiency of common detection methods and the dynamic background of UAV-based video sequences imagery, this paper proposes a fast detection method for moving targets in UAV video based on the feature extraction. The method mainly includes six steps, i.e., preprocessing, ORB feature extraction, PROSAC feature fine matching, global motion estimation and global motion compensation, initial detection of moving target and morphological post-processing. The results of two video experiments carried by UAVs show that the moving target detection results of the proposed method in this paper are better, the computational efficiency is the highest, and hence this method can meet the requirements of real-time processing.

Keywords video sequential imagery      ORB feature      PROSAC fine matching      moving target detection     
ZTFLH:  TP751  
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiong TAN
Jinglei WANG
Yifan SUN
Cite this article:   
Xiong TAN,Jinglei WANG,Yifan SUN. A fast detection method for moving targets in UAV video based on the feature extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 27-32.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020227     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/27
Fig.1  Processing flowchart of processed method
Fig.2  Schematic diagram of FAST key feature point detection
Fig.3  Dji Royal 2 UAV video sequence imagery
Fig.4  Unmanned airship video sequence imagery
Fig.5  Result of coarse matching of data 1
Fig.6  Result of fine matching of data 1
Fig.7  Result of motion compensation of data 1
Fig.8  Results of moving target detection by original image frame using difference method of data 1
Fig.9  Result of moving target detection results of the proposed method of data 1
Fig.10  Result of coarse matching of data 2
Fig.11  Result of fine matching of data 2
Fig.12  Result of motion compensation of data 2
Fig.13  Results of moving target detection by original image frame using difference method of data 2
Fig.14  Result of moving target detection results of the proposed method
方法 时间
数据一 数据二
SIFT+RANSAC 132.530 0.078
SIFT+PROSAC 134.030 0.093
SURF+RANSAC 23.750 0.047
SURF+PROSAC 23.690 0.047
ORB+RANSAC 0.344 0.016
ORB+PROSAC 0.344 0.016
Tab.1  Moving target detection efficiency(″)
[1] Mu Y W, Guo C H, Xin Y D. A new interframe difference algorithm for moving target detection[C]// IEEE International Congress on Image and Signal Processing, 2010(1):285-289.
[2] 熊英. 基于背景和帧间差分法的运动目标提取[J]. 计算机时代, 2014(3):38-41.
[2] Xiong Y. Moving object extraction based on background difference and frame difference method[J]. Computer Era, 2014(3):38-41.
[3] Kengo M, Takashi S, Shoji Y, et al. Moving-object detection method for moving cameras by merging background subtraction and optical flow methods[C]// IEEE Global Conference on Signal and Information Processing, 2017:383-387.
[4] 谭熊. 基于光流分析的无人机视频运动目标检测与跟踪[D]. 郑州:解放军信息工程大学, 2011.
[4] Tan X. UAV video moving target detection and tracking based on optical flow analysis[D]. Zhengzhou:Information Engineering University, 2011.
[5] 王朋月. 基于全局运动估计补偿的目标检测算法研究[D]. 北京:北京工业大学, 2018.
[5] Wang P Y. Research on target detection algorithm based on global motion estimation and compensation[D]. Beijing:Beijing Industry University, 2018.
[6] 卢裕秋, 孙金玉, 马世伟. 基于深度卷积神经网络的运动目标检测方法[J]. 系统仿真学报, 2019, 31(11):2275-2280.
[6] Lu Y Q, Sun J Y, Ma S W. Moving object detection based on deep convolutional neural network[J]. Journal of System Simulation, 2019, 31(11):2275-2280.
[7] Ren S, He K, Gir S R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 url: http://ieeexplore.ieee.org/document/7485869/
[8] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:779-778.
[9] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multi-box detector[C]// European Conference on Computer Vision,Amsterdam.IEEE, 2016:21-37.
[10] 任霞. 基于无人机视频的运动目标检测与跟踪方法研究[D]. 成都:电子科技大学, 2020.
[10] Ren X. Research of detection and tracking based on the moving targets in UAV video[D]. Chengdu:University of Electronic Science and Technology of China, 2020.
[11] 陈挺. 无人机对地运动目标跟踪技术研究[D]. 西安:西北工业大学, 2018.
[11] Chen T. Moving objects tracking in aerial videos[D]. Xi’an:Northwestern Polytechnical University, 2018.
[12] 董晶, 傅丹, 杨夏. 无人机视频运动目标实时检测及跟踪[J]. 应用光学, 2013, 34(2):255-259.
[12] Dong J, Fu D, Yang X, et al, Real-time moving object detection and tracking by using UAV videos[J], Applied Optics, 2013, 34(2):255-259.
[13] Rublee E, Rabaud V, Konolige K, et al. ORB:An efficient alternative to SIFT or SURF[C]// Proceedings of IEEE International Conference on Computer Vision, Washington,USA, 2011:2564-2571.
[14] Mair E, Hager G D, Burschka D, et al. Adaptive and generic corner detection based on the accelerated segment test[C]// Proceeding of European Conference on Computer Vision,Crete,Greece, 2010, 63(12):183-196.
[15] Calonder M, Lepetit V, Fua P. BRIEF:Binary robust independent elementary features[C]// Proceeding of European Conference on Computer Vision,Crete,Greece, 2010, 63(14):778-792.
[16] Fischler M A. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Readings in Computer Vision, 1987:726-740.
[17] Chum O. Matching with PROSAC—Progressive Sample Consensus[J]. Processing of Conference on CVPR, 2005, 1(2):220-226.
[1] Xiang LI, Cankun YANG, Chunping ZHOU, Xiaojuan LI, Ke ZHANG. A review of target motion information extraction from high-resolution optical satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech