Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 189-197     DOI: 10.6046/zrzyyg.2021056
|
Application of domestic low-cost micro-satellite images in urban bare land identification
SUN Yiming1(), ZHANG Baogang1(), WU Qizhong1, LIU Aobo1, GAO Chao2, NIU Jing3, HE Ping3
1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
2. Unit 63921 of People’s Liberation Army, Beijing 100094, China
3. Shenzhen Aerospace Dongfanghong Satellite Ltd., Shenzhen 518000, China
Download: PDF(4376 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Low-cost microsatellites and their constellations are important directions in the development of satellite remote sensing in recent years. This is because they can effectively alleviate the questions such as the low transit frequency of a single satellite and the high networking cost of satellites. Monitoring using remote sensing satellites is an important means to obtain bare land information in the ecological field owing to its wide coverage area and immunity to man-made interference. This study carried out exploratory research on urban bare land identification using the remote sensing images of low-cost micro-satellites of MV-1 Constellation. The identification results were compared to those obtained using Landsat8 images to explore the reliability of the implication of domestic low-cost micro-satellite images in urban bare land identification. To this end, this study selected Donggang District, Rizhao City, Shandong Province as an example and developed the extraction method that combines unsupervised vegetation indices-excess green and excess red (ExG-ExR)-with the maximum likelihood method. The results are as follows. ① The panchromatic images with a resolution of 5 m that were shot by Micro-satellite No. 02 of MV-1 Constellation can clearly reflect the current status of Donggang District. They have higher resolution and perform better in capturing details of ground features. However, they lack wave band advantages over Landsat8 images. ② The images of Micro-satellite No. 02 had an overall classification accuracy of 93.3% and a Kappa coefficient of up to 0.85. Therefore, the micro-satellites of MV-1 Constellation are reliable in bare land identification to some extent. ③ The difference between the bare land area in the Donggang urban area identified using Micro-satellite No. 02 images and Landsat8 images was 1.5 percentage points. This indicates that micro-satellites of MV-1 Constellation have equivalent inversion capacity in urban bare land identification to mainstream satellites under the conditions of proper algorithms, close shooting time, and consistent geo-coordinate correction.

Keywords microsatellite      bare land inversion      satellites of MV-1 Constellation     
ZTFLH:  TP79  
Corresponding Authors: ZHANG Baogang     E-mail: symkfz@outlook.com;zhang_bob@bnu.edu.cn
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiming SUN
Baogang ZHANG
Qizhong WU
Aobo LIU
Chao GAO
Jing NIU
Ping HE
Cite this article:   
Yiming SUN,Baogang ZHANG,Qizhong WU, et al. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021056     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/189
参数 微景一号01星
(京师一号)
微景一号02星 Landsat8卫星
轨道参数 739 km,SSO轨道,降交点10: 30 492 km,SSO轨道,降交点10: 30 705 km,降交点10: 00
图像分辨率/m 宽幅相机:
73.9
4.9 OLI: 30(B1-B7,B9),15(B8)
中分相机: 8 TIRS: 100
波段/nm 宽幅相机: 470~770 蓝光: 400~500
绿光: 490~580
红光: 580~700
B2: 450~515
B3: 525~600
B4: 630~680
B5: 845~885
中分相机: 420~700
尺寸/m3 <0.5×0.5×0.5 0.5×0.4×0.4
Tab.1  Main parameters of Microscope 1 series satellite and Landsat8 satellite
Fig.1  Remote sensing images of research area
Fig.2  Vegetation indices image of research area
地物 建筑物 水体 裸地
建筑物 0 1.99 1.99
水体 0 2.00
裸地 0
Tab.2  Separable parameter of terrain objects of MV-1 Constellation
地物 建筑物 水体 裸地
建筑物 0 1.92 1.91
水体 0 1.99
裸地 0
Tab.3  Separable parameter of terrain objects of Landsat8
Fig.3  Flow chart of image processing
Fig.4  Qingdao road image of Donggang District, Rizhao City
Fig.5  Extracted results of bare land
Fig.6  Comparison of extraction results of bare land
分类精度验证 目视解译结果 行像
使用者
精度/%
裸地
像元
非裸地
像元
裸地像元 271 29 300 90.3
非裸地像元 26 474 500 94.1
列像元 297 503 800
生产者精度/% 91.2 94.2
总精度/% 93.3 Kappa=0.85
Tab.4  Accuracy validation results of MV-1 Constellation satellite classification
分类精度验证 目视解译结果 行像
使用者
精度/%
裸地
像元
非裸地
像元
裸地像元 268 32 300 89.3
非裸地像元 38 462 500 92.4
列像元 306 494 800
生产者精度/% 87.6 93.5
总精度/% 91.2 Kappa=0.81
Tab.5  Accuracy validation results of Landsat8 satellite classification
[1] 胡敏, 唐倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5):15-19.
[1] Hu M, Tang Q, Peng J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5):15-19.
[2] 黄辉军, 刘红年, 蒋维楣, 等. 南京市PM2.5物理化学特性及来源解析[J]. 气候与环境研究, 2006, 11(6):713-722.
[2] Huang H J, Liu H N, Jiang W M, et al. Physical and chemical characteristics and source apportionment of PM2.5 in Nanjing[J]. Climatic and Environmental Research, 2006, 11(6):713-722.
[3] 陈瑞敏, 吴雁, 康文英, 等. 连续雾霾天气污染物浓度变化及天气形势特征分析[J]. 气候与环境研究, 2014, 19(2):209-218.
[3] Chen R M, Wu Y, Kang W Y, et al. Analysis of pollutant concentrations and characteristics of continuous smoggy weather[J]. Climatic and Environmental Research, 2014, 19(2):209-218.
[4] 王社扣, 王体健, 石睿, 等. 南京市不同类型扬尘源排放清单估计[J]. 中国科学院大学学报, 2014, 31(3):351-359.
[4] Wang S K, Wang T J, Shi R, et al. Estimation of different fugitive dust emission inventory in Nanjing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):351-359.
[5] 方小珍, 孙列, 毕晓辉, 等. 宁波城市扬尘化学组成特征及其来源解析[J]. 环境污染与防治, 2014, 36(1):55-59.
[5] Fang X Z, Sun L, Bi X H, et al. The chemical compositions and sources apportionment of re-suspended dust in Ningbo[J]. Environmental Pollution and Control, 2014, 36(1):55-59.
[6] Gillette D A, Passi R. Modeling dust emission caused by wind erosion[J]. Journal of Geophyysical Research-Atmospheres, 1988, 93(d11):14233-14242.
[7] 潘月云, 李楠, 郑君瑜, 等. 广东省人为源大气污染物排放清单及特征研究[J]. 环境科学学报, 2015, 35(9):2655-2669.
[7] Pan Y Y, Li N, Zheng J Y, et al. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2015, 35(9):2655-2669.
[8] 肖晗, 杨晓春, 吴其重, 等. 西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019, 39(1):222-228.
[8] Xiao H, Yang X C, Wu Q Z, et al. Estimate emissions of construction fugitive dust in Xi’an[J]. Acta Scientiae Circumstantiae, 2019, 39(1):222-228.
[9] 薛亦峰, 周震, 黄玉虎, 等. 北京市建筑施工扬尘排放特征[J]. 环境科学, 2017, 38(6):2231-2237.
[9] Xue Y F, Zhou Z, Huang Y H, et al. Fugitive dust emission characteristics from building construction sites of Beijing[J]. Environmental Science, 2017, 38(6):2231-2237.
[10] 刘奥博, 吴其重, 陈雅婷, 等. 北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018, 38(2):471-477.
[10] Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing plain area[J]. China Environmental Science, 2018, 38(2):471-477.
[11] 杨卫芬, 程钟, 张洁, 等. 常州市裸露地面风蚀扬尘排放清单及分布特征研究[J]. 环境监测管理与技术, 2020, 32(2):56-60.
[11] Yang W F, Cheng Z, Zhang J, et al. Research on emission inventory and distribution characteristics of wind erosion dust from bare ground in Changzhou[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(2):56-60.
[12] 熊文成, 徐永明, 李京荣, 等. 天津市扬尘污染源中高分辨率遥感监测[J]. 遥感信息, 2017, 32(3):45-49.
[12] Xiong W C, Xu Y M, Li J R, et al. Urban dust pollution sources monitoring based on medium and high resolution satellite imagery in Tianjin[J]. Remote Sensing Information, 2017, 32(3):45-49.
[13] 邓媛媛, 巫兆聪, 易俐娜, 等. 面向对象的高分辨率影像农用地分类[J]. 自然资源遥感, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[13] Deng Y Y, Wu Z C, Yi L N, et al. Research on object-oriented classification of agricultural land based on high resolution images[J]. Remote Sensing for Land and Resources, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[14] 李亮, 应国伟, 文学虎, 等. 融合时间特征的高分辨率遥感影像分类[J]. 自然资源遥感, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[14] Li L, Ying G W, Wen X H, et al. Classification of high spatial resolution remotely sensed images by temporal feature fusion[J]. Remote Sensing for Land and Resources, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
[15] 徐媛倩, 姜楠, 燕启社, 等. 郑州市裸露地面风蚀扬尘排放清单研究[J]. 环境污染与防治, 2016, 38(4):22-27.
[15] Xu Y Q, Jiang N, Yan Q S, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou[J]. Environmental Pollution and Control, 2016, 38(4):22-27.
[16] 张立坤, 李令军, 姜磊, 等. 北京建筑施工裸地时空变化及扬尘污染排放[J]. 环境科学, 2019, 40(1):135-142.
[16] Zhang L K, Li L J, Jiang L, et al. Spatial and temporal distribution characteristics and fugitive dust emission of building sites in Beijing[J]. Environmental Science, 2019, 40(1):135-142.
doi: 10.1021/es048761f url: https://pubs.acs.org/doi/10.1021/es048761f
[17] 李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10):42-45.
[17] Li D, Mei X D, Zhao H, et al. Comparative analysis of GF-1 and Landsat8 image land use remote sensing interpretation[J]. Engineering of Surveying and Mapping, 2018, 27(10):42-45.
[18] 牛静. 京师一号卫星[J]. 卫星应用, 2019(10):70.
[18] Niu J. Jingshi-1(BNU-1) microsat[J]. Satellite Application, 2019(10):70.
[19] 徐涵秋, 唐菲. 新一代Landsat系列卫星: Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11):3249-3257.
[19] Xu H Q, Tang F. Analysis of new characteristics of the first Landsat8 image and their ecoenvironmental significance[J]. Acta Ecologica Sinica, 2013, 33(11):3249-3257.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[20] 王振武, 孙佳骏, 于忠义, 等. 基于支持向量机的遥感图像分类研究综述[J]. 计算机科学, 2016, 43(9):11-17.
[20] Wang Z W, Sun J J, Yu Z Y, et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 2016, 43(9):11-17.
[21] 吴非权, 马海州, 沙占江, 等. 基于决策树与监督、非监督分类方法相结合模型的遥感应用研究[J]. 盐湖研究, 2005, 13(4):9-13.
[21] Wu F Q, Ma H Z, Sha Z J, et al. Combining the decision tree and supervised,unsupervised technique to classify the satellite images[J]. Journal of Salt Lake Research, 2005, 13(4):9-13.
[22] 柏延臣, 王劲峰. 结合多分类器的遥感数据专题分类方法研究[J]. 遥感学报, 2005, 9(5):555-563.
[22] Bo Y C, Wang J F. Combining multiple classifiers for thematic classification of remotely sensed data[J]. Journal of Remote Sensing, 2005, 9(5):555-563.
[23] 吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 自然资源遥感, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
[23] Wu Z J, Zhao S H. A study of enhanced index-based built-up index based on Landsat TM imagery[J]. Remote Sensing for Land and Resources, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
[24] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293.
doi: 10.1016/j.compag.2008.03.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0168169908001063
[25] Woebbecke D M, Meyer G E, Vonbargen K, et al. Color indexes for weed identification under various soil,residue,and lighting conditions[J]. Transactions of The ASAE, 1995, 38(1):259-269.
doi: 10.13031/2013.27838 url: http://elibrary.asabe.org/abstract.asp??JID=3&amp;AID=27838&amp;CID=t1995&amp;v=38&amp;i=1&amp;T=1
[26] Meyer G, Hindman T, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3543.
[27] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1):146-168.
doi: 10.1117/1.1631315 url: http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.1631315
[28] 崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息, 2012, 27(5):89-95.
[28] Cui F N, Song X Y, Sun B S, et al. Change detection of winter wheat area based on multi-temporal TM images[J]. Remote Sensing Information, 2012, 27(5):89-95.
[29] 吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1):1-23.
[29] Wu Y Q, Meng T L, Wu S H. Research progress of image thresholding methods in recent 20 years(1994—2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1):1-23.
[30] 周钰哲. 微小卫星特性与应用发展概述[J]. 数字通信世界, 2018(12):26-27.
[30] Zhou Y Z. Overview of microsatellite characteristics and application development[J]. Digital Communication World, 2018(12):26-27.
[1] LI Zhi-zhong, WANG Yong-jiang, XU Shao-yu . THE EARTH OBSERVING BY MICROSATELLITE AND ITS APPLYING PROSPECT[J]. REMOTE SENSING FOR LAND & RESOURCES, 2000, 12(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech