|
|
|
|
|
|
Application of domestic low-cost micro-satellite images in urban bare land identification |
SUN Yiming1( ), ZHANG Baogang1( ), WU Qizhong1, LIU Aobo1, GAO Chao2, NIU Jing3, HE Ping3 |
1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China 2. Unit 63921 of People’s Liberation Army, Beijing 100094, China 3. Shenzhen Aerospace Dongfanghong Satellite Ltd., Shenzhen 518000, China |
|
|
Abstract Low-cost microsatellites and their constellations are important directions in the development of satellite remote sensing in recent years. This is because they can effectively alleviate the questions such as the low transit frequency of a single satellite and the high networking cost of satellites. Monitoring using remote sensing satellites is an important means to obtain bare land information in the ecological field owing to its wide coverage area and immunity to man-made interference. This study carried out exploratory research on urban bare land identification using the remote sensing images of low-cost micro-satellites of MV-1 Constellation. The identification results were compared to those obtained using Landsat8 images to explore the reliability of the implication of domestic low-cost micro-satellite images in urban bare land identification. To this end, this study selected Donggang District, Rizhao City, Shandong Province as an example and developed the extraction method that combines unsupervised vegetation indices-excess green and excess red (ExG-ExR)-with the maximum likelihood method. The results are as follows. ① The panchromatic images with a resolution of 5 m that were shot by Micro-satellite No. 02 of MV-1 Constellation can clearly reflect the current status of Donggang District. They have higher resolution and perform better in capturing details of ground features. However, they lack wave band advantages over Landsat8 images. ② The images of Micro-satellite No. 02 had an overall classification accuracy of 93.3% and a Kappa coefficient of up to 0.85. Therefore, the micro-satellites of MV-1 Constellation are reliable in bare land identification to some extent. ③ The difference between the bare land area in the Donggang urban area identified using Micro-satellite No. 02 images and Landsat8 images was 1.5 percentage points. This indicates that micro-satellites of MV-1 Constellation have equivalent inversion capacity in urban bare land identification to mainstream satellites under the conditions of proper algorithms, close shooting time, and consistent geo-coordinate correction.
|
Keywords
microsatellite
bare land inversion
satellites of MV-1 Constellation
|
|
Corresponding Authors:
ZHANG Baogang
E-mail: symkfz@outlook.com;zhang_bob@bnu.edu.cn
|
Issue Date: 14 March 2022
|
|
|
[1] |
胡敏, 唐倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5):15-19.
|
[1] |
Hu M, Tang Q, Peng J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5):15-19.
|
[2] |
黄辉军, 刘红年, 蒋维楣, 等. 南京市PM2.5物理化学特性及来源解析[J]. 气候与环境研究, 2006, 11(6):713-722.
|
[2] |
Huang H J, Liu H N, Jiang W M, et al. Physical and chemical characteristics and source apportionment of PM2.5 in Nanjing[J]. Climatic and Environmental Research, 2006, 11(6):713-722.
|
[3] |
陈瑞敏, 吴雁, 康文英, 等. 连续雾霾天气污染物浓度变化及天气形势特征分析[J]. 气候与环境研究, 2014, 19(2):209-218.
|
[3] |
Chen R M, Wu Y, Kang W Y, et al. Analysis of pollutant concentrations and characteristics of continuous smoggy weather[J]. Climatic and Environmental Research, 2014, 19(2):209-218.
|
[4] |
王社扣, 王体健, 石睿, 等. 南京市不同类型扬尘源排放清单估计[J]. 中国科学院大学学报, 2014, 31(3):351-359.
|
[4] |
Wang S K, Wang T J, Shi R, et al. Estimation of different fugitive dust emission inventory in Nanjing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):351-359.
|
[5] |
方小珍, 孙列, 毕晓辉, 等. 宁波城市扬尘化学组成特征及其来源解析[J]. 环境污染与防治, 2014, 36(1):55-59.
|
[5] |
Fang X Z, Sun L, Bi X H, et al. The chemical compositions and sources apportionment of re-suspended dust in Ningbo[J]. Environmental Pollution and Control, 2014, 36(1):55-59.
|
[6] |
Gillette D A, Passi R. Modeling dust emission caused by wind erosion[J]. Journal of Geophyysical Research-Atmospheres, 1988, 93(d11):14233-14242.
|
[7] |
潘月云, 李楠, 郑君瑜, 等. 广东省人为源大气污染物排放清单及特征研究[J]. 环境科学学报, 2015, 35(9):2655-2669.
|
[7] |
Pan Y Y, Li N, Zheng J Y, et al. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2015, 35(9):2655-2669.
|
[8] |
肖晗, 杨晓春, 吴其重, 等. 西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019, 39(1):222-228.
|
[8] |
Xiao H, Yang X C, Wu Q Z, et al. Estimate emissions of construction fugitive dust in Xi’an[J]. Acta Scientiae Circumstantiae, 2019, 39(1):222-228.
|
[9] |
薛亦峰, 周震, 黄玉虎, 等. 北京市建筑施工扬尘排放特征[J]. 环境科学, 2017, 38(6):2231-2237.
|
[9] |
Xue Y F, Zhou Z, Huang Y H, et al. Fugitive dust emission characteristics from building construction sites of Beijing[J]. Environmental Science, 2017, 38(6):2231-2237.
|
[10] |
刘奥博, 吴其重, 陈雅婷, 等. 北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018, 38(2):471-477.
|
[10] |
Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing plain area[J]. China Environmental Science, 2018, 38(2):471-477.
|
[11] |
杨卫芬, 程钟, 张洁, 等. 常州市裸露地面风蚀扬尘排放清单及分布特征研究[J]. 环境监测管理与技术, 2020, 32(2):56-60.
|
[11] |
Yang W F, Cheng Z, Zhang J, et al. Research on emission inventory and distribution characteristics of wind erosion dust from bare ground in Changzhou[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(2):56-60.
|
[12] |
熊文成, 徐永明, 李京荣, 等. 天津市扬尘污染源中高分辨率遥感监测[J]. 遥感信息, 2017, 32(3):45-49.
|
[12] |
Xiong W C, Xu Y M, Li J R, et al. Urban dust pollution sources monitoring based on medium and high resolution satellite imagery in Tianjin[J]. Remote Sensing Information, 2017, 32(3):45-49.
|
[13] |
邓媛媛, 巫兆聪, 易俐娜, 等. 面向对象的高分辨率影像农用地分类[J]. 自然资源遥感, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
|
[13] |
Deng Y Y, Wu Z C, Yi L N, et al. Research on object-oriented classification of agricultural land based on high resolution images[J]. Remote Sensing for Land and Resources, 2010, 22(4):117-121.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
|
[14] |
李亮, 应国伟, 文学虎, 等. 融合时间特征的高分辨率遥感影像分类[J]. 自然资源遥感, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
|
[14] |
Li L, Ying G W, Wen X H, et al. Classification of high spatial resolution remotely sensed images by temporal feature fusion[J]. Remote Sensing for Land and Resources, 2016, 28(2):91-98.doi: 10.6046/gtzyyg.2016.02.15.
doi: 10.6046/gtzyyg.2016.02.15
|
[15] |
徐媛倩, 姜楠, 燕启社, 等. 郑州市裸露地面风蚀扬尘排放清单研究[J]. 环境污染与防治, 2016, 38(4):22-27.
|
[15] |
Xu Y Q, Jiang N, Yan Q S, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou[J]. Environmental Pollution and Control, 2016, 38(4):22-27.
|
[16] |
张立坤, 李令军, 姜磊, 等. 北京建筑施工裸地时空变化及扬尘污染排放[J]. 环境科学, 2019, 40(1):135-142.
|
[16] |
Zhang L K, Li L J, Jiang L, et al. Spatial and temporal distribution characteristics and fugitive dust emission of building sites in Beijing[J]. Environmental Science, 2019, 40(1):135-142.
doi: 10.1021/es048761f
url: https://pubs.acs.org/doi/10.1021/es048761f
|
[17] |
李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10):42-45.
|
[17] |
Li D, Mei X D, Zhao H, et al. Comparative analysis of GF-1 and Landsat8 image land use remote sensing interpretation[J]. Engineering of Surveying and Mapping, 2018, 27(10):42-45.
|
[18] |
牛静. 京师一号卫星[J]. 卫星应用, 2019(10):70.
|
[18] |
Niu J. Jingshi-1(BNU-1) microsat[J]. Satellite Application, 2019(10):70.
|
[19] |
徐涵秋, 唐菲. 新一代Landsat系列卫星: Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11):3249-3257.
|
[19] |
Xu H Q, Tang F. Analysis of new characteristics of the first Landsat8 image and their ecoenvironmental significance[J]. Acta Ecologica Sinica, 2013, 33(11):3249-3257.
doi: 10.5846/stxb
url: http://www.ecologica.cn/
|
[20] |
王振武, 孙佳骏, 于忠义, 等. 基于支持向量机的遥感图像分类研究综述[J]. 计算机科学, 2016, 43(9):11-17.
|
[20] |
Wang Z W, Sun J J, Yu Z Y, et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 2016, 43(9):11-17.
|
[21] |
吴非权, 马海州, 沙占江, 等. 基于决策树与监督、非监督分类方法相结合模型的遥感应用研究[J]. 盐湖研究, 2005, 13(4):9-13.
|
[21] |
Wu F Q, Ma H Z, Sha Z J, et al. Combining the decision tree and supervised,unsupervised technique to classify the satellite images[J]. Journal of Salt Lake Research, 2005, 13(4):9-13.
|
[22] |
柏延臣, 王劲峰. 结合多分类器的遥感数据专题分类方法研究[J]. 遥感学报, 2005, 9(5):555-563.
|
[22] |
Bo Y C, Wang J F. Combining multiple classifiers for thematic classification of remotely sensed data[J]. Journal of Remote Sensing, 2005, 9(5):555-563.
|
[23] |
吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 自然资源遥感, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
|
[23] |
Wu Z J, Zhao S H. A study of enhanced index-based built-up index based on Landsat TM imagery[J]. Remote Sensing for Land and Resources, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10.
doi: 10.6046/gtzyyg.2012.02.10
|
[24] |
Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293.
doi: 10.1016/j.compag.2008.03.009
url: https://linkinghub.elsevier.com/retrieve/pii/S0168169908001063
|
[25] |
Woebbecke D M, Meyer G E, Vonbargen K, et al. Color indexes for weed identification under various soil,residue,and lighting conditions[J]. Transactions of The ASAE, 1995, 38(1):259-269.
doi: 10.13031/2013.27838
url: http://elibrary.asabe.org/abstract.asp??JID=3&AID=27838&CID=t1995&v=38&i=1&T=1
|
[26] |
Meyer G, Hindman T, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3543.
|
[27] |
Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1):146-168.
doi: 10.1117/1.1631315
url: http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.1631315
|
[28] |
崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息, 2012, 27(5):89-95.
|
[28] |
Cui F N, Song X Y, Sun B S, et al. Change detection of winter wheat area based on multi-temporal TM images[J]. Remote Sensing Information, 2012, 27(5):89-95.
|
[29] |
吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1):1-23.
|
[29] |
Wu Y Q, Meng T L, Wu S H. Research progress of image thresholding methods in recent 20 years(1994—2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1):1-23.
|
[30] |
周钰哲. 微小卫星特性与应用发展概述[J]. 数字通信世界, 2018(12):26-27.
|
[30] |
Zhou Y Z. Overview of microsatellite characteristics and application development[J]. Digital Communication World, 2018(12):26-27.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|