Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 88-96     DOI: 10.6046/zrzyyg.2022223
|
Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM
WANG Liying1(), MA Xuwei2,3,4, YOU Ze1, WANG Shichao1, CAMARA Mahamadou1
1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China
2. CGTEG China Coal Research Institute, Beijing 100013, China
3. Engineering Research Center for Technology Equipment of Emergency Refuge in Coal Mine, Beijing 100013, China
4. Beijing Coal Mine Safety Engineering Technology Research Center, Beijing 100013, China
Download: PDF(3094 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Conventional land cover classification methods based on airborne multispectral light detection and ranging (MS-LiDAR) data have insufficient capability for the cooperative utilization of spatial-spectral information or too high dimensions of features in the joint utilization of various features. This study proposed a spatial-spectral joint segmentation algorithm for airborne MS-LiDAR point clouds based on the multivariate Gaussian mixture model (GMM). First, radiometric correction, anomaly removal, and data fusion were performed for the original multi-band independent point clouds, forming multispectral point clouds that presented spatial locations and their multi-band spectral information. Then, spatial-spectral feature vectors were constructed using the extracted multispectral and elevation features of laser points. Meanwhile, the unit and scale differences among different types of features were eliminated through feature normalization and discretization. Subsequently, a GMM was built to fit the multimodal distribution of objects in the spatial-spectral feature space. Accordingly, the response levels of laser points to various objects were obtained, and the classification of various objects was determined according to the principle of maximum responsiveness. Finally, a 3D majority voting method was designed to optimize the segmentation results. The effectiveness and feasibility of the proposed algorithm were verified through experiments based on surveyed Optech Titan MS-LiDAR data. The experimental results show that the multivariate GMM combined with multi-band intensity features and elevation features yielded an overall segmentation accuracy of 93.57% and a Kappa coefficient of 0.912. The results also indicate that the high-accuracy segmentation of MS-LiDAR point clouds can be achieved by only combining four-dimensional features. This study provides a new approach for comprehensively utilizing the multispectral and spatial information in MS-LiDAR data.

Keywords multispectral light detection and ranging      point cloud segmentation      multivariate Gaussian mixture model      multimodal distribution      majority voting method      spatial-spectral joint feature     
ZTFLH:  TP79  
  P237  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liying WANG
Xuwei MA
Ze YOU
Shichao WANG
Mahamadou CAMARA
Cite this article:   
Liying WANG,Xuwei MA,Ze YOU, et al. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022223     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/88
Fig.1  Top views of Titan MS-LiDAR intensity data
Fig.2  Probability density estimation in 2D feature space
Fig.3  Flowchart of the proposed algorithm
Fig.4  Top view of merged point cloud
序号 特征组合 总体精度/% Kappa系数
IC1 + z 64.13 0.491
IC2 + z 88.08 0.838
IC3 + z 65.45 0.509
I C 1+ IC2 + z 88.72 0.846
IC2 + IC3 +z 91.53 0.885
IC3 + IC1 +z 65.88 0.515
I C 1+ IC2 + IC3 + z 91.36 0.882
IC1 + IC2 + IC3 80.81 0.735
Tab.1  Comparison of segmentation accuracy under different feature combinations
指标 特征组合⑤ 特征组合⑦
优化前 优化后 优化前 优化后
总体精度/% 91.53 92.71 91.36 93.57
Kappa系数 0.885 0.901 0.882 0.912
Tab.2  Accuracy comparison of feature combination ⑤ and ⑦ before and after segmentation optimization
Fig.5  Segmentation results and comparison before and after optimization
实验数据 参考数据 合计 用户精度/%
建筑物 道路 树木 草地
建筑物 19 981 37 709 128 20 855 95.81
道路 0 23 623 134 2 264 26 021 90.78
树木 407 145 28 312 2 016 30 880 91.68
草地 24 936 873 39 785 41 618 95.60
合计 20 412 24 741 30 028 44 193 119 374
生产者精度/% 97.89 95.48 94.29 90.03
总体精度: 93.57% Kappa系数: 0.912
Tab.3  Confusion matrix for the proposed algorithm
算法参考文献 算法原理 联合特征 总体精度/% Kappa系数
本文算法 多元GMM 多光谱、nDSM 93.57 0.912
Huo等[10] SVM分类 多光谱、伪NDVIs、形态学剖面、多尺度形态学剖面、nDSM 93.28 0.910
Teo等[12] SVM分类 多光谱、NDFIs、曲率、nDSM 93.00 0.911
Zou等[21] 决策树分类 伪NDVI、绿化率、强度、高程、点数、返回数、类别、亮度、面积 91.63 0.895
Fernandez-Diaz等[8] 马氏距离 5个结构波段、2个波段强度 90.22 0.870
Ahokas等[15] 随机森林 多光谱、nDSM、点邻域特征 93.50
Shaker等[18] 对数似然分类 高程、高程变化、强度、强度变化、NDWI、回波数 96.50
Wang等[14] SVM分类 空间位置、多光谱、几何、结构 94.76 0.935
Tab.4  Accuracy comparison between the proposed algorithm and other classical algorithms
[1] Zhou W. An object-based approach for urban land cover classification:Integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):928-931.
doi: 10.1109/LGRS.8859 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
[2] 张继贤, 林祥国, 梁欣廉. 点云信息提取研究进展和展望[J]. 测绘学报, 2017, 46(10):1460-1469.
doi: 10.11947/j.AGCS.2017.20170345
[2] Zhang J X, Lin X G, Liang X L. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1460-1469.
doi: 10.11947/j.AGCS.2017.20170345
[3] Morsy S, Shaker A, El-Rabbany A. Multispectral LiDAR data for land cover classification of urban areas[J]. Sensors, 2017, 17(5):958.
doi: 10.3390/s17050958 url: https://www.mdpi.com/1424-8220/17/5/958
[4] Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2015, 2:113-119.
[5] Zulfiquar K. Performance analysis of multispectial LiDAR in land cover classification[D]. Toronto: Ryerson University, 2017.
[6] Morsy S, Shaker A, El-Rabbany Y A, et al. Airborne multi-spectral LiDAR data for land-cover classification and land/water map-ping using different spectral indexes[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, III-3:217-224.
[7] Chen B, Shi S, Gong W, et al. Multispectral LiDAR point cloud classification:A two-step approach[J]. Remote Sensing, 2017, 9 (4):373.
doi: 10.3390/rs9040373 url: http://www.mdpi.com/2072-4292/9/4/373
[8] Fernandez-Diaz J, Carter W, Glennie C, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR[J]. Remote Sensing, 2016, 8(11):936.
doi: 10.3390/rs8110936 url: http://www.mdpi.com/2072-4292/8/11/936
[9] 潘锁艳, 管海燕. 机载多光谱LiDAR数据的地物分类方法[J]. 测绘学报, 2018, 47(2):198-207.
doi: 10.11947/j.AGCS.2018.20170512
[9] Pan S Y, Guan H Y. Object classification using airborne multispectral LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):198-207.
doi: 10.11947/j.AGCS.2018.20170512
[10] Huo L Z, Silva C A, Klauberg C, et al. Supervised spatial classification of multispectral LiDAR data in urban areas[J]. PLoS One, 2018, 13(10):e0206185.
doi: 10.1371/journal.pone.0206185 url: https://dx.plos.org/10.1371/journal.pone.0206185
[11] Wang Y, Gu Y. Multispectral LiADR data fusion via multiple kernel learning for remote sensing classification[C]// 2018 9th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).IEEE, 2018:1-6.
[12] Teo T A, Wu H M. Analysis of land cover classification using multi-wavelength LiDAR system[J]. Applied Sciences, 2017, 7(7):663.
doi: 10.3390/app7070663 url: http://www.mdpi.com/2076-3417/7/7/663
[13] Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification[C]// IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2017:5264-5267.
[14] Wang Q, Gu Y. A Discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(3):1568-1586.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[15] Ahokas E, Hyyppä J, Yu X, et al. Towards automatic single-sensor mapping by multispectral airborne laser scanning[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B3:155-162.
[16] 袁鹏飞, 黄荣刚, 胡平波, 等. 基于多光谱LiDAR数据的道路中心线提取[J]. 地球信息科学学报, 2018, 20(4):452-461.
doi: 10.12082/dqxxkx.2018.170634
[16] Yuan P F, Huang R G, Hu P B, et al. Road axis extraction method based on multi-spectral LiDAR data[J]. Journal of Geo-Information Science, 2018, 20(4):452-461.
[17] 曹爽, 潘锁艳, 管海燕. 机载多光谱LiDAR的随机森林地物分类[J]. 测绘通报, 2019(11):79-84.
doi: 10.13474/j.cnki.11-2246.2019.0356
[17] Cao S, Pan S Y, Guan H Y. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 2019(11):79-84.
doi: 10.13474/j.cnki.11-2246.2019.0356
[18] Shaker A, Yan W Y, Larocque P E. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:94-108.
doi: 10.1016/j.isprsjprs.2019.04.005
[19] Bakuła K, Kupidura P, Jełowicki Ł. Testing of land cover classification from multispectral airborne laser scanning data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:161-169.
[20] Miller C I, Thomas J J, Kim A M, et al. Application of image classification techniques to multispectral LiDAR point cloud data[C]// Laser Radar Technology and Applications XXI.International Society for Optics and Photonics, 2016, 9832:98320X.
[21] Zou X L, Zhao G H, Li J, et al. 3D land cover classification based on multispectral LiDAR point clouds[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:741-747.
[22] Unnikrishnan A, Sowmya P S K. Deep AlexNet with reduced number of trainable parameters for satellite image classification[J]. Procedia Computer Science, 2018, 143:931-938.
doi: 10.1016/j.procs.2018.10.342 url: https://linkinghub.elsevier.com/retrieve/pii/S1877050918320386
[23] Zhang C, Sargent I, Pan X, et al. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sensing of Environment, 2018, 261:57-70.
[24] Jiang Y, Li Y, Zhang H. Hyperspectral image classification based on 3-D separable ResNet and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12):1949-1953.
doi: 10.1109/LGRS.8859 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
[25] Pan S, Guan H, Chen Y, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:241-254.
doi: 10.1016/j.isprsjprs.2020.05.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271620301489
[26] Pan S, Guan H, Yu Y, et al. A comparative land-cover classification feature study of learning algorithms:DBM,PCA,and RF using multispectral LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4):1314-1326.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[27] Yu Y, Liu C, Guan H, et al. Land cover classification of multispectral LiDAR data with an efficient self-attention capsule network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:1-5.
[28] Yu Y T, Guan H Y, Li D L, et al. A hybrid capsule network for land cover classification using multispectral LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1263-1267.
doi: 10.1109/LGRS.8859 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
[29] Wang Q, Zhang X, Gu Y. Spatial-spectral smooth graph convolutional network for multispectral point cloud classification[C]// IEEE International Geoscience and Remote Sensing Symposium,IEEE, 2020:1062-1065.
[30] Li D, Shen X, Yu Y, et al. Building extraction from airborne multi-spectral LiDAR point clouds based on graph geometric moments convolutional neural networks[J]. Remote Sensing, 2020, 12(19):3186.
doi: 10.3390/rs12193186 url: https://www.mdpi.com/2072-4292/12/19/3186
[31] Yan W Y, Shaker A. Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 67:35-44.
[32] Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(2):291-298.
doi: 10.1109/89.279278 url: http://ieeexplore.ieee.org/document/279278/
[33] Day N E. Estimating the components of a mixture of normal distributions[J]. Biometrika, 1969(3):463-474.
[1] YU Liang, LI Ting, ZHAN Qingming, YU Kun. Segmentation of LiDAR point clouds based on similarity measures in multi-dimensional Euclidean Space[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 31-36.
[2] ZHU Hong, ZHANG Zhengpeng. Method of segmentation and semi-automatic modeling for vehicle-borne LiDAR point cloud data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 47-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech