|
|
The influence of geological background on trace elements of soil, A case study of Yubei area |
Ming-Shu YAN1,2( ), Jian HUANG3, Zhong-Xiang HE1, Li-Ran BAO1, Yu-Jie LUO1 |
1.Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China 2.Chongqing Key Laboratory of land quality geological survey,Chongqing 400038, China 3.Power China Chengdu Engineering Corporation Limited,Chengdu 610072, China |
|
|
Abstract The study of the control of geological background over soil elements could provide a scientific basis for regional soil element geochemical research, planting fertilization and agricultural layout. This paper discusses the influence of the geological background on the content and distribution of Cl, Mn, B, Zn, Cu and Mo by using the grid location and chemical analysis, combined with the GIS technology and the related evaluation standards. According to the results, the values of Mn, Cu and Zn are generally moderate and at rich level in Yubei area; Mo and B element values are moderately high and are significantly higher than the values of the main urban area of Chongqing; Zn element values are significantly higher than the national level. B, Cl, Cu and Mn elements show a high degree of spatial correlation, with structural spatial variation playing a leading role, affected by the geological background. Mo and Zn elements show moderate spatial correlation, influenced jointly by structural factors and stochastic factors. The strata play a dominant role in the distribution of elemental content, and the distribution of soil element content corresponds spatially to the strata. Soil parent rock determines soil elements content level, with the main affecting factor being rock type and the subordinate factor being the geological period of the formation of the rock . These features further explain the impact of strata on soil elements. The influences of soil type on elements are also significant. The content of Mn, Cu, Zn, Mo, B is highest in the limestone soil, and the content of Mo is the lowest in paddy soil. These results indicate that the study of the control of geological background as the dominant factor over soil elements can provide the basis for the study of the planting fertilization and agricultural distribution planning.
|
Received: 26 June 2017
Published: 20 February 2018
|
|
|
|
|
|
|
指标 | 理论模型 | 块金值 | 基台值 | 块金值/基台值 | 变程 | 决定系数 | 残差 | B | 指数模型 | 0.005 63 | 0.027 46 | 20.50 | 9.9 | 0.573 | 7.443×10-5 | Cl | 指数模型 | 0.002 43 | 0.016 86 | 14.41 | 4.5 | 0.507 | 6.683×10-6 | Cu | 指数模型 | 0.040 2 | 0.202 2 | 19.88 | 633 | 0.786 | 4.489×10-4 | Mn | 指数模型 | 0.015 9 | 0.091 8 | 17.32 | 4.2 | 0.122 | 1.079×10-3 | Mo | 指数模型 | 0.032 1 | 0.064 3 | 49.92 | 131 | 0.844 | 1.123×10-4 | Zn | 指数模型 | 0.007 04 | 0.026 58 | 26.49 | 5.4 | 0.1 | 1.545×10-4 |
|
|
元素 | 渝北地区 | 重庆主城区 | 全国 | 最小值 | 最大值 | 平均值 | 背景值X0 | 背景值X1[17] | X0/X1 | 背景值X2[17] | X0/X2 | Cl | 22.1 | 410.0 | 71.8 | 69.7 | 66.3 | 1.05 | 75.7 | 0.92 | B | 9.0 | 375.0 | 53.3 | 50.6 | 40.4 | 1.25 | 46.5 | 1.09 | Mn | 15 | 14 872 | 616 | 591 | 552 | 1.07 | 557 | 1.06 | Zn | 8.6 | 1 144.0 | 85.7 | 84.3 | 82.1 | 1.03 | 66.2 | 1.27 | Cu | 1.4 | 295.0 | 27.9 | 25.0 | 23.4 | 1.07 | 22.2 | 1.13 | Mo | 0.125 | 43.7 | 0.697 | 0.592 | 0.49 | 1.21 | 0.65 | 0.91 |
|
|
|
|
地层 | 样本数(N) | B | Cl | Cu | Mn | Mo | Zn | J2s | 3670 | 42.3 | 79.9 | 25.5 | 627 | 0.530 | 86.6 | J2xs | 524 | 43.8 | 66.7 | 24.9 | 624 | 0.589 | 88.0 | J2x | 501 | 47.5 | 55.5 | 27.5 | 631 | 0.700 | 88.1 | J1-2z | 342 | 55.5 | 47.9 | 28.6 | 544 | 0.749 | 85.2 | J1z | 404 | 64.0 | 53.5 | 22.6 | 351 | 0.720 | 68.8 | T3xj | 751 | 79.1 | 72.9 | 16.3 | 379 | 0.836 | 59.8 | T2l | 129 | 99.5 | 80.8 | 28.6 | 619 | 1.276 | 83.2 | T1j | 514 | 83.3 | 66.2 | 42.5 | 859 | 1.358 | 108.9 | T1f | 160 | 62.5 | 58.1 | 92.5 | 1 240 | 1.170 | 133.6 | P2l | 63 | 63.3 | 67.3 | 79.8 | 1 129 | 1.615 | 116.9 |
|
|
|
|
地质年代 | 样本数(N) | 样品类型 | B | Cl | Cu | Mn | Mo | Zn | | | 土壤 | 53.3 | 57.2 | 29.6 | 617 | .689 | 94.8 | 侏罗纪 | 24 | 泥岩 | 51.6 | 42.7 | 22.8 | 796 | 0.486 | 83.2 | | | q | 1.03 | 1.34 | 1.30 | 0.78 | 1.41 | 1.14 | | | 土壤 | 50.2 | 70.5 | 24.7 | 609 | 0.647 | 91.8 | 侏罗纪 | 22 | 砂岩 | 29.3 | 61.5 | 14.6 | 862 | 0.535 | 56.9 | | | q | 1.71 | 1.15 | 1.69 | 0.71 | 1.32 | 1.61 | | | 土壤 | 87.5 | 91.4 | 15.3 | 1343 | 0.979 | 72.1 | 三叠纪 | 8 | 砂岩 | 66.1 | 58.8 | 7.2 | 171 | 0.322 | 45.9 | | | q | 1.32 | 1.56 | 2.11 | 7.84 | 3.04 | 1.57 | | | 土壤 | 85.0 | 55.9 | 60.0 | 791 | 1.524 | 111.4 | 三叠纪 | 8 | 石灰岩 | 29.3 | 221.9 | 11.5 | 190 | 0.481 | 15.0 | | | q | 2.9 | 0.25 | 5.23 | 4.16 | 3.16 | 7.44 | | | 土壤 | 66.0 | 55.1 | 91. 7 | 921 | 1.878 | 111.9 | 二叠纪 | 8 | 石灰岩 | 39.7 | 62.2 | 31.4 | 973 | 0.639 | 59.8 | | | q | 1.66 | 0.89 | 2.92 | 0.95 | 2.93 | 1.87 |
|
|
|
|
|
|
[1] |
张晓霞,李占斌,李鹏. 黄土高原草地土壤微量元素分布特征研究[J]. 水土保持学报,2010,24(5):45-48.
|
[2] |
Nikolic N, Nikolic M.Gradient analysis reveals a copper paradox on floodplain soils under long-term pollution by mining waste[J]. Science of the total environment, 2012, 425: 146-154.
|
[3] |
Foroughifar H, Jafarzadeh A A, Torabi H, et al.Using geostatistics and geographic information system techniques to characterize spatial variability of soil properties, including micronutrients[J].Communications in soil science and plant analysis, 2013,44(8): 1273-1281.
|
[4] |
Navas A, Machín J.Spatial distribution of heavy metals and arsenic in soils of Aragon (northeast Spain): controlling factors and environmental implications[J]. Applied Geochemistry, 2002, 17(8):961-973.
|
[5] |
宋丰骥,常庆瑞,钟德燕,等. 黄土丘陵沟壑区土壤微量元素空间变异特征及其影响因素[J].干旱地区农业研究,2012,30(1):36-41.
|
[6] |
王小艳, 冯跃华, 李云, 等. 黔中喀斯特山区村域稻田土壤理化特性的空间变异特征及空间自相关性[J]. 生态学报, 2015,35(9):2926-2936.
|
[7] |
杜娟, 张永清, 周进财, 等. 尧都区耕层土壤微量元素有效态含量空间分布特征.中国农学通报,2014:30(3), 162-167.
|
[8] |
张智,任意,鲁剑巍,等.长江中游农田土壤微量养分空间分布特征[J].土壤学报,2016,53(6):1489-1496.
|
[9] |
农金花, 梁增芳, 石永莲,等. 岩溶区植烟土壤 pH, 有效铁锰和交换性钙的空间异质性[J].土壤,2016,48(4), 769-776.
|
[10] |
武婕,李玉环,李增兵,等. 南四湖区农田土壤有机质和微量元素空间分布特征及影响因素[J]. 生态学报,2014,34(6): 1596-1605.
|
[11] |
Cannon H L, Connally G G, Epstein J B, et al.Rocks:the geologic source of most trace elements[J]. Geochem. Environ, 1978, 3:17-31.
|
[12] |
陈兴仁,周俊. 安徽江淮地区土壤微量元素分布特征及成因[J]. 分析安徽地质,2012,22(2):123-129.
|
[13] |
幸宏伟, 龚翠平. 重庆南温泉公园园林土壤微量元素的分析[J]. 重庆工商大学学报: 自然科学版, 2012, 29(4): 74-79.
|
[14] |
易时来, 邓烈, 何绍兰, 等. 柑橘园紫色土 Fe/Mn/Zn 含量近红外光谱监测模型研究[J]. 中国农业科学, 2011, 44(11): 2318-2324.
|
[15] |
四川省农牧厅. 四川省第二次土壤普查数据资料汇编[R].成都:四川省土壤普查办公室,1992.
|
[16] |
中国地质调查局.地质技术标准:多目标区域地球化学调查规范(1:250000)[S]. 北京:中国地质调查局,2014.
|
[17] |
张茂忠,雷家立,龚媛媛,等. 多目标区域地球化学调查报告(重庆市)[R]. 重庆: 重庆市地勘局川东南地质大队,2008.
|
[18] |
严明书,张茂忠,陈琦伟,等. 重庆市国土资源1:5万生态球化学调查——渝北实验区调查报告[R]. 重庆: 重庆市地勘局川东南地质大队,2012,137-151.
|
[19] |
全国土壤普查办公室. 全国第二次土壤普查技术规程[M].北京: 农业出版社,1979.
|
[20] |
高杰,李锐,李今今,等. 白云岩风化剖面的粒度分布、元素迁移及碳同位素特征———以黔北新蒲剖面为例[J]. 生态学报,2016,36(5):1409-1420.
|
[21] |
黎娟, 邓小华, 王建波, 等. 喀斯特地区植烟土壤有效硼含量分布及其影响因素[J].土壤,2013,45(6): 1055-1061.
|
[22] |
周豪. 四川盆地及其边缘南华系地层划分与对比[D].北京:中国矿业大学, 2014.
|
[23] |
Nesbitt H W, Markovics G.Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
|
[24] |
刘银飞, 孙彬彬, 贺灵, 等.福建龙海土壤垂向剖面元素分布特征[J].物探与化探,2016,40(4): 713-721.
|
[1] |
WANG Zhi-Qiang, YANG Jian-Feng, WEI Li-Xin, SHI Tian-Chi, CAO Yuan-Yuan. Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area, Ningxia[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 229-237. |
[2] |
ZHAO Xiao-Yuan, YANG Zhong-Fang, CHENG Hui-Yi, MA Xu-Dong, WANG Jue, LI Zhi-Kun, WANG Chen, LI Ming-Hui, LEI Feng-Hua. Geochemical characteristics and ecological health-related ranges of Copper in soil in Huaying Mountain-Xicao in Linshui County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 238-249. |
|
|
|
|