Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 17-23     DOI: 10.6046/gtzyyg.2019.02.03
|
Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis
Ruhan A1, Fang HE2, Biaobiao WANG3
1.Xi’an Peihua University, School of Accounting and Finance, Xi’an 710065, China;
2.Rocket Force Engineering University, School of Nuclear Engineering, Xi’an 710025, China;
3.Troops No.96862, Luoyang 471003, China
Download: PDF(9503 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to improve the hyperspectral images (HSI) classification accuracy and preprocess HSI by fully using the spatial and spectral information, this paper proposes a new spatial-spectral dimensionality reduction method, i.e., weighted spatial and spectral principle component analysis (WSSPCA). This algorithm reconstructs the HSI by using the physical characteristics of HSI, which can lower the influence of singular point in HSI. Principle component analysis (PCA) is utilized to reduce dimensionality of HIS, and it reduces the redundancy between bands and improves the HSI classification accuracy efficiently. The benchmark tests on PaviaU and Indian Pines demonstrate that the performance of WSSPCA is better than that of PCA and LPP when 5% and 10% samples in each class (10 samples are chosen when the total samples in every class is less than 100) are chosen randomly as train samples. The best values of Kappa coefficient obtained by WSSPCA are 0.955 9 and 0.896 1 respectively on the HSI datasets, exceeding the baseline by 0.193 8 and 0.205 0.

Keywords hyperspectral images classification      weighted spatial and spectral principle component analysis      dimensionality reduction     
:  TP751  
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruhan A
Fang HE
Biaobiao WANG
Cite this article:   
Ruhan A,Fang HE,Biaobiao WANG. Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis[J]. Remote Sensing for Land & Resources, 2019, 31(2): 17-23.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.03     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/17
Fig.1  Adjacent space of a pixel in different cases
Fig.2  Images and types of objects of PaviaU and Indian Pines
Fig.3  Relationship between different parameters and classification accuracy on PaviaU dataset
Fig.4  Relationship between dimension and classification accuracy on PaviaU dataset
算法 OA/%(维数) Kappa(维数)
基准线 82.33(1) 0.762 1(1)
PCA 82.35(20) 0.762 5(16)
LPP 82.42(5) 0.764 8(5)
WSSPCA 96.69(20) 0.955 9(21)
Tab.1  Best result and corresponding dimension on PaviaU dataset
Fig.5  Classification results
Fig.6  Relationship between different parameters and classification accuracy on Indian Pines dataset
Fig.7  Relationship between dimension and classification accuracy on Indian Pines dataset
算法 OA/%(维数) Kappa(维数)
基准线 72.97(1) 0.691 1(1)
PCA 72.94(20) 0.690 8(20)
LPP 72.91(3) 0.682 9(3)
WSSPCA 90.90(21) 0.896 1(21)
Tab.2  Best result and corresponding dimension on Indian Pines dataset
Fig.8  Classification results
[1] 黄鸿, 杨媚, 张满菊 . 基于稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程, 2013,21(11):2922-2930.
doi: 10.3788/OPE.20132111.2922
[1] Huang H, Yang M, Zhang M J . Hyperspectral remote sensing image classification based on SDE[J]. Optics and Precision Engineering, 2013,21(11):2922-2930.
[2] 杨艺, 韩崇昭, 韩德强 . 利用特征子空间评价与多分类器融合的高光谱图像分类[J]. 西安交通大学学报, 2010,44(8):21-24.
[2] Yang Y, Han C Z, Han D Q . Hyperspectral image classification based on feature subspace evaluation and multiple classification fusion[J]. Journal of Xi’an Jiaotong University, 2010,44(8):21-24.
[3] 粘永健, 苏令华, 孙蕾 , 等. 基于聚类的高光谱图像无损压缩[J]. 电子与信息学报, 2009,31(6):1271-1274.
doi: 10.3724/SP.J.1146.2008.00660
[3] Nian Y J, Su L H, Sun L , et al. Lossless coding for hyperspectral image based on spectral cluster[J]. Journal of Electronics and Information Technology, 2009,31(6):1271-1274.
[4] 常威威, 郭雷, 刘坤 , 等. 基于Contourlet变换和主成分分析的高光谱数据噪声消除方法[J]. 电子与信息学报, 2009,31(12):2892-2896.
doi: 10.3724/SP.J.1146.2008.01675
[4] Chang W W, Guo L, Liu K , et al. Denoising of hyperspectral data based on Contourlet transform and principal component analysis[J]. Journal of Electronics and Information Technology, 2009,31(12):2892-2896.
[5] 刘嘉敏, 罗甫林, 黄鸿 , 等. 应用相关近邻局部线性嵌入算法的高光谱遥感影像分类[J]. 光学精密工程, 2014,22(6):1668-1676.
[5] Liu J M, Luo F L, Huang H , et al. Classification of hyperspectral remote sensing images using correlation neighbor LLE[J]. Optics and Precision Engineering, 2014,22(6):1668-1676.
[6] 何同弟 . 高光谱图像的分类技术研究[D]. 重庆:重庆大学, 2014.
[6] He T D . The Classification Technology Research Based on Hyperspectral Image[D]. Chongqing:Chongqing University, 2014.
[7] 潘宗序, 禹晶, 肖创柏 , 等. 基于光谱相似性的高光谱图像超分辨率算法[J]. 自动化学报, 2014,40(12):2797-2807.
doi: 10.3724/SP.J.1004.2014.02797
[7] Pan Z X, Yu J, Xiao C B , et al. Spectral similarity-based super resolution for hyperspectral images[J]. Acta Automatica Sinica, 2014,40(12):2797-2807.
[8] Zhou Y C, Peng J T , Chen C L P .Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2):1082-1095.
doi: 10.1109/TGRS.2014.2333539 url: http://ieeexplore.ieee.org/document/6856200/
[9] 唐中奇, 付光远, 陈进 , 等. 基于多尺度分割的高光谱图像稀疏表示与分类[J]. 光学精密工程, 2015,23(9):2708-2714.
[9] Tang Z Q, Fu G Y, Chen J , et al. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Optics and Precision Engineering, 2015,23(9):2708-2714.
[10] He R, Hu B G, Zheng W S , et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 2011,20(6):1485-1494.
doi: 10.1109/TIP.2010.2103949 url: http://ieeexplore.ieee.org/document/5680649/
[11] Zhou Y C, Peng J T , Chen C L P .Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2):1082-1095.
doi: 10.1109/TGRS.2014.2333539 url: http://ieeexplore.ieee.org/document/6856200/
[12] 金鹏磊 . 空-谱联合高光谱数据降维与分类方法研究[D]. 西安:西安电子科技大学, 2014.
[12] Jing P L . Researches on Spatial-Spectral Based Dimensionality Reduction and Classification of Hypespectral Data[D]. Xi’an:Xidian University, 2014
[13] Bandos T V, Bruzzone L , Camps-Valls . Classification of hyperspectral image with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(3):862-873.
doi: 10.1109/TGRS.2008.2005729 url: http://ieeexplore.ieee.org/document/4786582/
[14] Wang R, Nie F P, Yang X J , et al. Robust 2DPCA with non-greedy -norm maximization for image analysis[J]. IEEE Transactions on Cybernetics, 2015,45(5):1108-1112.
[15] Lu X, Li X . Multiresolution imaging[J]. IEEE Transactions on Cybernetics, 2014,44(1):149-160.
doi: 10.1109/TCYB.2013.2286496 url: http://ieeexplore.ieee.org/document/6671369/
[16] He X F, Niyogi P. Locality preserving projections [C]//Advances in Neural Information Processing Systems(NIPS).Vancouver:MIT, 2004,16:153-160.
[17] Zhang Z Y, Zha H Y . Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment[J]. Journal of Shanghai University, 2004,8(4):406-424
doi: 10.1007/s11741-004-0051-1 url: http://link.springer.com/10.1007/s11741-004-0051-1
[18] 黄鸿, 郑新磊 . 加权空-谱与最近邻分类器相结合的高光谱图像分类[J]. 光学精密工程, 2016,24(4):873-881.
[18] Huang H, Zheng X L . Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Optics and Precision Engineering, 2016,24(4):873-881.
[19] 何芳, 王榕, 于强 , 等. 加权空谱局部保持投影的高光谱图像特征提取[J]. 光学精密工程, 2017,25(1):263-273.
[19] He F, Wang R, Yu Q , et al. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection (WSSLPP)[J]. Optics and Precision Engineering, 2017,25(1):263-273.
[20] Huang H, Luo F L, Liu J M , et al. Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,106:42-54.
doi: 10.1016/j.isprsjprs.2015.04.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271615001252
[1] FAN Xue, LIU Qingwang, TAN Bingxiang. Classification of forest species using airborne PHI hyperspectral data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech