|
|
The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area, northern Guizhou Province |
TIAN Hong-Jun1( ), ZHANG Guang-Da1, LIU Guang-Di2, YOU Wen-Bing3, ZHANG Ying-Wen4 |
1.Sichuan Zhongcheng Coal Field Geophysical Engineering Research Institute Co., Ltd.,Chengdu 610072, China 410208, China 2.School of Geosciences and Info-physics,Central South University,Changsha 410083,China 3.Hunan Jishan High-Tech Co., Ltd., Changsha 410208, China 4.No. 102 Geological Party, Guizhou Bureau of Geology and Mineral Resources, Zunyi 563003, China |
|
|
Abstract The electromagnetic and human interference in the Tailong geothermal test area of Qianbei (northern Guizhou) platform uplift on the Yangtze metaplatform has restricted the exploration effect of the traditional electromagnetic method. Based on a comprehensive evaluation of interference sources and rock physical parameters obtained from the experimental zone, the authors carried out high precision deep wide-area electromagnetic detection experiments, conducted two-dimensional continuum source inversion, and obtained underground stratigraphic resistivity distribution regularity and characteristics at the depth of 5 km, with lower Ordovician Meitan Formation, lower Cambrian Jindingshan Formation,, Mingxinsi Formation and Niutitang Formation as the low resistance cover layers of the experimental zone, the lower Ordovician Huayuan Formation, Tongzi Formation, Cambrian Loushanguan Formation, Shilengshui Formation, Gaotai Formation and Qingxudong Formation, and Sinian Dengying Formation as the high resistance layers for heat storage. The influence of the deep fracture structure on the heat storage layer was also revealed. The electrical layer revealed by the wide-area electromagnetic method is consistent with the information revealed by the drilling SZK1, and the results show that the wide-area electromagnetic method is an effective detection method in the strong geothermal interference zone of Qianbei platform uplift on the Yangtze paraplatform. The results obtained by the authors enrich the geothermal energy research results in northern Guizhou and provide geophysical parameters for further promotion of geothermal exploration in northern Guizhou.
|
Received: 22 April 2020
Published: 26 October 2020
|
|
|
|
|
|
Regional geology schematic map
|
地层名称 | 地层代号 | 电阻率变化范围/ (Ω·m) | 电阻率平均值/ (Ω·m) | 电性特征 | 统计数量 | 十字铺组+牯牛潭组 | O2s+O2g | 976.9~3737.3 | 2106.3 | 髙阻 | 15 | 宝塔组 | O2b | 778.85~2626.43 | 1487.5882 | 中髙阻 | 13 | 观音桥组 | O1gy | 724~1669.2 | 1196.3 | 中高阻 | 12 | 九架炉组 | C1j | 559.7~1332.8 | 897 | 中阻 | 14 |
|
Formation resistivity characteristics in test area
|
|
Contrast diagram of interference curve and resistivity and electric field curve after normalization of test area
|
|
Comprehensive results of WFEM
|
地层 | SZK1测井 分层底深/m | SZK1测井 分层厚度/m | 广域法 分层底深/m | 广域法 分层厚度/ | 电性特征 | 十字铺组 牯牛潭组 | 246.65 | 246.65 | 235 | 235 | 高阻 | 湄潭组 | 525.15 | 223.50 | 501 | 266 | 低阻 | 红花园组 桐梓组 娄山关组 石冷水组 高台组 清虚洞组 | 1617.00 | 1166.85 | 1549 | 1048 | 高阻 | 金顶山组 明心寺组 牛蹄塘组 | 2257.00 | 640.00 | 2286 | 637 | 低阻 | 灯影组 | 2802.00 (地质) | 545.00 | 2794 | 668 | 高阻 | 陡山沱组 南沱冰碛岩组 | 未揭穿 | — | 2966 | 172 | 低阻~中阻 |
|
Comparison table of SZK1 logging stratification and wide-area method stratification
|
[1] |
李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与 CSAMT 探测效果对比[J]. 物探与化探, 2015,39(5):967-972.
|
[1] |
Li D Q, Hu Y F. A comparison of wide-area electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972.
|
[2] |
刘春明, 佟铁钢, 何继善. 多种电磁法在某金矿的野外勘探应用[J]. 中国有色金属学报, 2013,23(9):2422-2429.
|
[2] |
Liu C M, Tong T G, He J S. Exploration of various electromagnetic method in some gold mine[J]. Chinese Journal of Nonferrous Metals, 2013,23(9):2422-2429.
|
[3] |
张国鸿, 李仁和. 可控源音频大地电磁法深部找矿实验效果[J]. 物探与化探, 2010,4(1):66-70.
|
[3] |
Zhang G H, Li R H. The test result of the controlled source audio-frequecy magnetotelluric method in the prospecting for deep ore deposits[J]. Geophysical and Geochemical Exploration, 2010,4(1):66-70.
|
[4] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,X1(3):1065-1072.
|
[4] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Natural Science Edition, 2010,X1(3):1065-1072.
|
[5] |
何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
|
[5] |
He J S. Wide-area electromagnetic method and pseudo-random signal electricity method [M]. Beijing: Higher Education Press, 2010.
|
[6] |
汤井田, 何继善. 可控源音频大地电磁法及应用[M]. 长沙: 中南大学出版社, 2005, 250-285.
|
[6] |
Tang J T, He J S. Controlled source audio-frequency magnetotellurics and application[M]. Changsha: Central South University Press, 2005, 250-285.
|
[7] |
朱裕振, 许聪悦. 广域电磁法深部找矿实验效果[J]. 物探与化探, 2011,35(6):743-746.
|
[7] |
Zhu Y Z, Xu C Y. The experimental application of wider field electromagnetic method to the prospectiang for deep ore deposits[J]. Geophysical and Geochemical Exploration, 2011,35(6):743-746.
|
[8] |
周必文, 凌帆. E-Ex广域电磁法探测火山岩油气藏的实验研究[J]. 油气地球物理, 2012(3):56-59.
|
[8] |
Zhou B W, Ling F. E-Ex wide field electromagnetic method experiment research in exploring volcanic rock reservoirs[J]. Oil and Gas Geophysics, 2012(3):56-59.
|
[9] |
韩至钧, 金占省. 贵州省水文地质志[M]. 北京: 地震出版社, 1996.
|
[9] |
Han Z J, Jin Z S. Hydrogeology of Guizhou province[M]. Beijing: Seismological Press, 1996.
|
[10] |
王虎, 朱斗圣, 张承飞, 等. 贵州省遵义县ZK1地热井钻井液技术[J]. 探矿工程:岩土钻掘工程, 2016,43(10):245-249.
|
[10] |
Wang H, Zhu D S, Zhang C F, et al. Drilling fluid technology for ZK1 geothermal well in Zunyi of Guizhou[J]. Exploration Engineering:Rock and Soil Drilling and Tunneling, 2016,43(10):245-249.
|
[11] |
袁富贵. 遵义市北郊地热特征[J] . 贵州地质, 1997,14(2):175-178.
|
[11] |
Yuan F G. Geotherm characteristic of the north suburb of Zunyi city[J]. Guizhou Geology, 1997,14(2):175-178.
|
[12] |
贵州省地质调查院. 1:25万毕节县幅、遵义市幅地质调查成果与进展[J]. 沉积与特提斯地质, 2005,25(1-2):141-144.
|
[12] |
Guizhou Geological Survey Institute. 1:250000 Bejie and Zunyi sheets in Guizhou institute of geological survey[J]. Sedimentary and Tethys Geology, 2005,25(1-2):141-144.
|
[1] |
CUI Rui-Kang, SUN Jian-Meng, LIU Xing-Jun, WEN Xiao-Feng. Major controlling factors of low-resistance shale gas reservoirs[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 150-159. |
[2] |
ZHANG Hua-Peng, QIAN Wei, LIU Jin, WU Li-Lin, SONG Ze-Zhuo. Leakage model-based experimental study on magnetometric resistivity method combined with pseudo-random signal technology[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 198-205. |
|
|
|
|