|
|
The application of integrated geophysical and geochemical methods to the prospecting of copper polymetallic deposits in the arid desert area |
GONG Sheng-Ping1,2( ), LU Gui-Fu1, XI Ming-Jie1, MA Sheng-Ming1, SU Wen-Li1 |
1. Institute of Geophysical and Geochemical Exploration,CAGS, Langfang 065000, China 2. School of Geophysics and Information Technology, China University of Geocsiences, Beijing 100083, China |
|
|
Abstract In order to study the combination of effective geophysical and geochemical prospecting methods in mineral inspection work in arid desert areas and to achieve regional mineral prospecting breakthroughs, the authors conducted the mineral survey work in an arid desert area in the Heiyingshan area of Inner Mongolia. Geophysical and geochemical methods were used in search for copper polymetallic deposits. Geological survey, high-power IP, high-precision magnetic survey at a scale of 1∶10 000 and thermomagnetic component soil measurement (1∶50 000) were carried out in the survey area. IP anomalies and magnetic anomalies were delineated, and characteristics of multi-element combination were revealed after data processing. The controllable source audio magnetotelluric sounding profiles were arranged in the locations of the IP anomalies and the anomaly concentration places of the elements to determine the downward distribution of the two high conductivity anomalies. The trench reveals that strong silicification, skarnization and malachite mineralization occur at the contact zone between the albite-actinolite-schist mixed with metamorphic quartz sandstone in the Gongpoquan Formation and the marble. The content of Cu and Ag in the samples reaches the boundarygrade. The ore-search prospects in the survey area are good and further work should be carried out.
|
Received: 30 April 2020
Published: 01 March 2021
|
|
|
|
|
|
Geological map and work arrangement in the survey area 1—medium-grained quartz diorite; 2—fine-grained hornblende gabbro; 3—metagranite of the first member of Gongpoquan formation in upper Ordovician-lower Silurian; 4—sandy gravel, silt, fine sand of Quaternary Holocene; 5—alluvial deposits of Quaternary Holocene; 6—gravel-bearing sandy soil of Chijinbao formation of Mesozoic; 7—fine-grained monzonitic granite; 8—medium-grained granodiorite; 9—blue-gray diorite porphyrite vein;10—red meat fine-grained K-feldspar granite; 11—granite acelite; 12—fine-grained monzonite vein; 13—fine-grained granodiorite; 14—fine-grained syenogranite; 15—fine-grained granite porphyry vein; 16—quartz vein; 17—marble; 18—metagranite; 19—albite-actinolite-schist; 20—skarnization; 21—lithofacies boundary; 22—fault structure; 23—survey area; 24—geophysical and geochemical survey points; 25—limonite mineralization; 26—Cu-Zn mineralization station; 27—trough location and number
|
岩石名称 | 样品数 | 电阻率/(Ω·M) | 极化率/% | 磁化率/(10-6 SI) | 常见值 | 变化范围 | 常见值 | 变化范围 | 常见值 | 变化范围 | 钠长阳起片岩 | 29 | 3315.9 | 205.2~13949.4 | 2.02 | 0.97~3.0 | 37355.2 | 85.7~91341.7 | 角闪辉长岩 | 30 | 3727.6 | 1023.6~28174.4 | 2.0 | 1.14~4.29 | 7260.0 | 294.0~42323.7 | 石英闪长岩 | 30 | 6581.6 | 1393.3~11322.5 | 0.7 | 0.4~2.3 | 3466.7 | 176.2~13904.6 | 二长花岗岩 | 30 | 1706.4 | 778.4~7123.4 | 2.68 | 1.15~4.63 | 116.6 | 0.9~1434.2 | 花岗闪长岩 | 21 | 1804.9 | 757.1~7927.2 | 3.01 | 0.92~4.05 | 1095.2 | 52.1~4695.1 | 正长花岗岩 | 12 | 2004.9 | 1161.1~3815.7 | 2.7 | 1.8~4.1 | 92.6 | 2.9~203.7 | 闪长玢岩 | 10 | 7429.2 | 2209.1~11228.2 | 2.3 | 0.8~3.0 | 102.2 | 88.1~363.2 | 钾长花岗岩 | 30 | 700.0 | 435.0~2481.9 | 2.5 | 1.8~3.5 | 202.5 | 36.4~696.1 | 大理岩 | 36 | 989.8 | 830.5~1455.5 | 0.12 | 0.05~0.19 | 3.70 | 1.0~9.7 | 斜长角闪岩(绿帘石化) | 32 | 95.3 | 80.2~9991.2 | 2.0 | 0.61~3.45 | 552.2 | 359.5~7579.3 | 斜长角闪岩(黄铁矿化) | 35 | 1220.5 | 571.0~2068.2 | 2.25 | 2.25~3.01 | 471.7 | 179.0~455.0 |
|
Physical properties of the rock
|
Fig.1,and Fig.3~Fig.6 are the same ">
|
Contour maps of the apparent resistivity(a) and apparent chargeability(b) of the TDIP survey a—the plan view of apparent resistivity;b—the plan view of apparent chargeability;the fracture is measured by geological means, and the geophysical color unit is only used in the survey area,the geological legend is shown in Fig.1,and Fig.3~Fig.6 are the same
|
|
Contour map of magnetic anomalies after pole reduction
|
|
Contour map of magnetic anomalies after upward extension 200 m
|
|
Integrated electrical survey profiles and inferred interpretation map of 470 line(a), 370 line(b)
|
|
Analyze map of geochemical anomalies
|
元素 | 异常面积/km2 | 平均值/10-6 | 最高值/10-6 | 异常下限/10-6 | 异常衬值 | NAP值 | 异常点数/个 | Au | 1.76 | 5.40×10-3 | 23.2×10-3 | 1.50×10-3 | 3.60 | 6.3 | 7 | Ag | 2.82 | 0.21 | 0.94 | 0.06 | 3.50 | 9.9 | 10 | Cu | 1.04 | 163 | 586 | 34.1 | 4.78 | 5.0 | 5 | Pb | 1.96 | 28.0 | 108 | 14.4 | 1.94 | 3.8 | 9 | Zn | 0.48 | 95.9 | 127 | 60.0 | 1.59 | 0.8 | 6 | As | 1.45 | 9.50 | 31.3 | 3.00 | 3.16 | 4.6 | 6 | Sb | 3.07 | 3.47 | 36.8 | 0.24 | 14.46 | 44.4 | 13 | W | 1.81 | 3.25 | 14.1 | 0.91 | 3.57 | 6.5 | 9 | Sn | 1.88 | 2.80 | 12.0 | 1.50 | 1.87 | 3.5 | 10 | Mo | 2.47 | 3.54 | 27.8 | 0.76 | 4.65 | 11.5 | 13 | Cd | 2.35 | 277×10-3 | 1030×10-3 | 91.0×10-3 | 3.04 | 7.1 | 11 |
|
Statistics of geochemical anomalies
|
刻槽样品号 | 分析结果/10-6 | 边界品位/10-6 | Cu | Zn | Ag | TC02-07 | 1449 | 162 | — | Cu:2000 | TC02-11 | 1017 | 215 | — | Ag:40~50 | TC02-13 | 1014 | 999 | — | Zn:5000 | TC02-15 | 1083 | 1856 | — | | TC02-36 | 1210 | 133 | — | | TC02-38 | 2236 | 124 | — | | TC05-03 | 2210 | 47.7 | — | | TC05-18 | 1926 | 138 | — | | TC05-19 | 2202 | 183 | — | | TC06-01 | 2068 | 121 | 28.48 | | TC06-02 | 3324 | 195 | 49.57 | | TC06-03 | 2444 | 240 | 15.59 | |
|
Analysis results of the grooved samples in the survey area
|
[1] |
刘涛涛, 戴朝成, 王新亮. 内蒙古中部乌拉山地区富铝片麻岩的地球化学特征和原岩建造[J]. 科学技术与工程, 2016,16(30):1671-1815.
|
[1] |
Liu T T, Dai C C, Wang X L. Geochemical characteristics and protolithformation of Al-rich gneisses in Wulashanarea, central Inner Mongolia[J]. Science Technology and Engineering, 2016,16(30):1671-1815.
|
[2] |
赵海超, 张金玲, 刘彩乐, 等. 青海省夏日哈木铜镍钴硫化物矿床找矿模型[J]. 科学技术与工程, 2018,18(36):166-174.
|
[2] |
Zhao H C, Zhang J L, Liu C L, et al. Copper-Nickel-Cobalt sulfide deposit prospecting model of Xiarihamu in Qinghai Province[J]. Science Technology and Engineering, 2018,18(36):166-174.
|
[3] |
陈化奇, 李永庆. 岩屑测量方法在干旱荒漠区的找矿效果——以贺兰山北段嘎拉斯台白钨矿的发现为例[J]. 物探与化探, 2019,43(1):55-63.
|
[3] |
Chen H Q, Li Y Q. The prospecting effect of rock debris measurement method in arid desert area: Exemplified by the discovery of the Galasitai scheelite deposit in northern Helanmountain[J]. Geophysical and Geochemical Exploration, 2019,43(1):55-63.
|
[4] |
李立新, 李百祥. 物探在甘肃铅锌矿产找矿中的作用和效果[J]. 甘肃地质, 2014,23(4):63-68.
|
[4] |
Li L X, Li B X. Role of geophysical prospecting played in prospecting Pb-Zn mineral resources in Gansu Province[J]. Gansu Geology, 2014,23(4):63-68.
|
[5] |
成秋明. 覆盖区矿产综合预测思路与方法[J]. 地球科学:中国地质大学学报, 2012,37(6):1109-1125.
|
[5] |
Cheng Q M. Ideas and methods for mineral resources integrated prediction in covered areas[J]. Earth Science:Journal of China University of Geosciences, 2012,37(6):1109-1125.
|
[6] |
戚志鹏, 李貅, 钱建兵, 等. 电法联合解释在覆盖区矿产勘查中的应用[J]. 地球科学:中国地质大学学报, 2012,37(6):1199-1208.
|
[6] |
Qi Z P, Li X, Qian J B, et al. Application of electrical joint interpretation method in mineral exploration of coverage areas[J]. Earth Science:Journal of China University of Geosciences, 2012,37(6):1199-1208.
|
[7] |
魏永强, 胡明考, 刘士凯, 等. 新型AGRSS航空伽马能谱测量系统在甘肃礼县地区铀及多金属矿产勘查中的应用效果[J]. 地球物理学进展, 2017,32(6):2677-2686.
|
[7] |
Wei Y Q, Hu M K, Liu S K, et al. Application effect of new airborne gamma ray spectrometry system on uranium and polymetallic deposit prospecting in Lixian of Gansu Province[J]. Progress in Geophysics, 2017,32(6):2677-2686.
|
[8] |
龚胜平, 丁卫忠, 王明明, 等. 相位激发极化法在多宝山矿产远景调查中的应用效果[J]. 物探化探计算技术, 2013,35(5):524-529.
|
[8] |
Gong S P, Ding W Z, Wang M M, et al. The application effect of phase-IP method in Duobaoshan perspective survey[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013,35(5):524-529.
|
[9] |
黄桂珍. 荒漠戈壁覆盖区的矿产勘查技术探讨[J]. 资源环境与工程, 2014,28(1):69-73.
|
[9] |
Huang G Z. Over view of new prospecting methods of gobi-over burden area[J]. Resources Environment & Engineering, 2014,28(1):69-73.
|
[10] |
孟贵祥, 庄道泽, 王为江. 西部戈壁荒漠区大极距激电找矿试验分析[J]. 地球学报, 2006,27(2):175-180.
|
[10] |
Meng G X, Zhuang D Z, Wang W J. Experimental analysis of the long-space induced polarization method in the gobi-desert area of western China[J]. Acta Geoscientica Sinica. 2006,27(2):175-180.
|
[11] |
张先年, 徐遂勤, 刘海军. 大功率激电中梯在某金矿勘查中的应用[J]. 科学技术与工程, 2010,10(26):6511-6514.
|
[11] |
Zhang X N, Xu S Q, Liu H J. Application of high-power IP intermediate gradient method in a prospecting project of an Au-ore district[J]. Science Technology and Engineering, 2010,10(26):6511-6514.
|
[12] |
谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003,10(1):225-238.
|
[12] |
Xie X J, Wang X Q. Recent developments on deep-penetrating geochemistry[J]. Earth Science Frontiers, 2003,10(1):225-238.
|
[13] |
牛洪斌, 李绪善, 徐家乐, 等. 物化探技术进步及其在甘肃地质勘查中的应用[J]. 甘肃地质, 2016,25(3):20-26.
|
[13] |
Niu H B, Li X S, Xu J L, et al. The technical progress of geophysical and geochemical exploration and their applications in Gansu Province[J]. Gansu Geology, 2016,25(3):20-26.
|
[14] |
李荣亮, 田建荣, 刘洋, 等. 综合物探方法在甘肃梧桐井铁铜多金属矿勘查中的应用[J]. 地质与勘探, 2017,53(4):755-764.
|
[14] |
Li R L, Tian J R, Liu Y, et al. Application of integrated geophysical methods to exploration in the Wutongjing Iron-Copper polymetallicdeposit of Gansu Province[J]. Geology and Exploration, 2017,53(4):755-764.
|
[15] |
柳建新, 郭振威, 童孝忠, 等. 地面高精度磁法在新疆哈密地区磁铁矿勘查中的应用[J]. 地质与勘探, 2011,47(3):432-438.
|
[15] |
Liu J X, Guo Z W, Tong X Z, et al. Application of the ground high-precision magnetic method to magnetite survey in the Hamiarea, Xinjiang[J]. Geology and Exploration, 2011,47(3):432-438.
|
[16] |
李文明, 杨生飞, 全守村, 等. 内蒙古月牙山地区地球化学异常特征及找矿远景预测[J]. 矿产勘查, 2017,8(1):101-111.
|
[16] |
Li W M, Yang S F, Quan S C, et al. Characteristics of geochemical anomalies and prospecting prognosis of Yueyashan area,Inner Mongolia[J]. Mineral Exploration, 2017,8(1):101-111.
|
[17] |
张江苏, 王滔, 毛艳丽, 等. 甘肃省南部矿集区水系沉积物测量地球化学特征及找矿预测[J]. 科学技术与工程, 2016,16(29):121-133.
|
[17] |
Zhang J S, Wang T, Mao Y L, et al. Geochemical characteristics of stream sediments and metallogenic prognosis of southern ore-concentration area, Gansu Province[J]. Science Technology and Engineering, 2016,16(29):121-133.
|
[18] |
张波, 滕汉仁, 胥溢. 甘肃南部大水金矿矿集区磁异常特征及找矿分析[J]. 物探与化探, 2018,42(5):917-924.
|
[18] |
Zhang B, Teng H R, Xu Y. A discussion on the characteristics of magnetic anomaly and ore-prospecting orientation in Dashui gold concentration area of south Gansu Province[J]. Geophysical and Geochemical Exploration, 2018,42(5):917-924.
|
[19] |
Gong S P, Yang Y B, Lin P R , et al. Three-dimensional electrical exploration methods for the mapping of Polymetallic targets in Gansu Province, China[J]. Geophysical Prospecting, 2019,67(7):1929-1947.
|
[20] |
龚胜平, 杨亚斌, 张光之, 等. 三维时间域激发极化法探测花牛山铅锌矿的试验研究[J]. 科学技术与工程, 2018,18(18):16-24.
|
[20] |
Gong S P, Yang Y B, Zhang G Z, et al. Experimental study on 3D time-domain electromagnetic exploration in Huaniushan Pd-Zn deposit[J]. Science Technology and Engineering, 2018,18(18):16-24.
|
[21] |
席明杰, 马生明, 胡树起, 等. 内蒙古准苏吉花铜钼矿区土壤热磁组分地球化学异常特征及意义[J]. 物探化探计算技术, 2014,10(1):125-137.
|
[21] |
Xi M J, Ma S M, Hu S Q, et al. Characteristics and significances of soil thermomagnetic components geochemical anomalies of the Zhunsujihua copper-molybdenum deposit in Inner Mongolia[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014,10(1):125-137.
|
[22] |
马生明, 朱立新. 热液成因有色金属矿多维异常体系——以马头斑岩型钼铜矿为例[J]. 吉林大学学报:地球科学版, 2014,44(1):134-144.
|
[22] |
Ma S M, Zhu L X. Multi-dimensional anomaly system for hydrothermal nonferrous metal deposits: Taking the Matou porphyry molybdenum copper mine in Anhui province as an example[J]. Journal of Jilin University:Earth Science Edition, 2014,44(1):134-144.
|
[1] |
YANG Xing, GUAN Yu-Chun, ZOU Tao, LI Wei. Application of comprehensive soil and heavy sand survey in tin polymetallic prospecting in Kundelai Zhalage area, Zhalute Banner, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 868-880. |
[2] |
Feng Jun, Jiang Wen, Zhang Zheng. Geophysical prospecting mode and metallogenic model of the Weiquan silver-copper polymetallic deposit in Xinjiang[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 868-876. |
|
|
|
|