|
|
A Python-based scheme of Rayleigh-wave dispersion inversion |
WU Wei-Zhi( ), LOU Li, WANG Peng, WANG Bin |
Geological Exploration Technology Institute of Anhui Province,Heifei 230041,China |
|
|
Abstract This study developed a workflow of Rayleigh-wave dispersion inversion using the Python programming language, and the detail is as follows.First,carry out the forward modeling of the dispersion curves on a horizontal layered model using the pysurf96 software package.Second,create an objective function used to describe the fitting degree of the dispersion curves.Third,complete the dispersion curve inversion using the heuristic algorithm in the scikit-opt software package.The problems encountered in the function call in the workflow were proposed and solved.The results show that the Python-based dispersion curve inversion of Rayleigh wave in multilayered media is reliable and offers a certain computational efficiency.In this way,this study built a Python-based inversion platform of underground layered structures using the wave dispersion,thus providing a method for other researchers to do inversion using open-source software.Finally,this study carried out the inversion of the crust and upper mantle structures using the dispersion curves extracted from the study of Yi-bo Peng on the noise in the Hailar Basin,achieving ideal results.
|
Received: 12 August 2021
Published: 21 June 2022
|
|
|
|
|
层厚/m | vs/(m·s-1) | vp/(m·s-1) | 密度/(kg·m-3) | 10 | 200 | 400 | 2000 | 半空间 | 400 | 800 | 2000 |
|
Parameters of two layered media model
|
|
Rayleigh wave dispersion curve of two layered media model based on pysurf96
|
|
Results of different heuristic algorithms a—differential evolution algorithm;b—genetic algorithm;c—particle swarm optimization;d—simulated annealing algorithm
|
|
Phase sensitivity kernel of Rayleigh wave on 2 Hz
|
|
Efficiency and stability of different heuristic algorithms a—differential evolution algorithm;b—genetic algorithm;c—particle swarm optimization;d—simulated annealing algorithm
|
|
Inversion of Rayleigh wave dispersion curve in Hailar Basin by Genetic Algorithm
|
[1] |
彭一波, 姜明明, 艾印双. 基于Python语言的ObsPy软件包从地震背景噪声中提取瑞利面波经验格林函数的实行方案[J]. 地球物理学进展, 2019, 34(3):919-927.
|
[1] |
Peng Y B, Jiang M M, Ai Y S. Efficient scheme to extract Green functions of Rayleigh wave from seismic noise via a Python library for seismology ObsPy[J]. Progress in Geophysics, 2019, 34(3):919-927.
|
[2] |
夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015.
|
[2] |
Xia J H. High-frequency surface waves method[M]. Wuhan: China University of Geosciences Press, 2015.
|
[3] |
Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1):431-438.
|
[4] |
Chen X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409.
|
[5] |
Herrmann R B. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
|
[6] |
Yang T, Yi W. A Study of leaky mode wave and Zig-Zag dispersion curve in Rayleigh-wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(4):295-300.
|
[7] |
Pan Y, Xia J, Zeng C. Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data[J]. Journal of Applied Geophysics, 2013, 88(1):94-100.
|
[8] |
凡友华, 刘雪峰, 陈晓非. 面波频散反演地下层状结构的拟牛顿法[J]. 物探与化探, 2006, 30(5):456-459.
|
[8] |
Fan Y H, Liu X F, Chen X F. The Quasi Newton method in the inversion of the dispersion curve of Rayleigh wave in multilayered media[J]. Geophysical and Geochemical Exploration, 2006, 30(5):456-459.
|
[9] |
石耀霖, 金文. 面波频散反演地球内部构造的遗传算法[J]. 地球物理学报, 1995, 38(2):189-198.
|
[9] |
Shi Y L, Jin W. Genetic algorithms inversion of lithospheric structure from surface wave dispersion[J]. Chinese Journal of Geophysics, 1995, 38(2):189-198.
|
[10] |
翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4):476-481.
|
[10] |
Zhai J Y, Zhao Y Y, An D Y. The ant colony algorithm for the inversion of the disperson curve of Rayleigh wave in multilayered media[J]. Geophysical and Geochemical Exploration, 2010, 34(4):476-481.
|
[11] |
Zhang J, Zhang H, Chen E, et al. Real-time earthquake monitoring using a search engine method[J]. Nature Communications, 2014, 5(1):1-9.
|
[12] |
李英康, 高锐, 姚聿涛, 等. 大兴安岭造山带及两侧盆地的地壳速度结构[J]. 地球物理学进展, 2014, 29(1):73-83.
|
[12] |
Li Y K, Gao R, Yao Y T, et al. The srust velocity structrue of DA Hinggan Ling orgenic belt and the basins on both sides[J]. Progress in Geophysics, 2014, 29(1):73-83.
|
[13] |
李皎皎, 黄金莉, 刘志坤. 用背景噪声和地震面波反演东北地区岩石圈速度结构[J]. 地震, 2012, 32(4):22-32.
|
[13] |
Li J J, Huang J L, Liu Z K. Inversion of lithospheric velocity structure in Northeast China using ambient noise and seismic surface wave[J]. Earthquake, 2012, 32(4):22-32.
|
[14] |
Zha Y, Webb S C. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(5):3220-3237.
|
[1] |
XIANG Zhu-Bao, ZHANG Da-Zhou, ZHU De-Bing, LI Ming-Zhi, XIONG Zhang-Qiang. Exploring the Rayleigh wave propagation characteristics in different aggregate concrete models[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1226-1235. |
[2] |
LI Xin-Xin, LI Jiang, LIU Jun, SHEN Hong-Yan. Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1470-1476. |
|
|
|
|