The 1∶250 000 multi-target geochemical survey shows that there is a large area of zinc-rich fluvo-aquic soil in northern Anhui Province, and the study on the distribution law, bioavailability, and influencing factors of zinc in the soil is of great significance to the development of zinc-rich agricultural industries. This study investigated the distribution characteristics, occurrence forms, bioavailability, and influencing factors of zinc in the topsoil at a depth of 0~20 cm and the section soil of 0~200 cm depth of both the fluvo-aquic soil and the lime concretion black soil in northern Anhui Province. The results are as follows: The fluvo-aquic soil has abundant total zinc and moderate available zinc, while the lime concretion black soil lacks the total zinc in general and is rich in available zinc. The total zinc in the fluvo-aquic soil is significantly positively correlated with manganese, organic matter, and phosphorus. The available zinc in both the fluvo-aquic soil and the lime concretion black soil is positively correlated with the available phosphorus and negatively correlated with pH. The zinc in the soil at the depth of 0~200 cm mainly occurs as residuals for both the fluvo-aquic soil and the sand concretion black soil. The total content of the water-soluble and ion-exchangeable zinc that is easily absorbed by plants in the plough layer of the fluvo-aquic soil area accounts for 0.29% of the total zinc content, and the content of iron-manganese oxide bound zinc accounts for 23.62% of the total zinc content. The total zinc is obviously enriched in the soil at a depth of 0~85 cm, which is significantly restricted by the phosphorus and manganese contents in the soil. The total content of the water-soluble and ion-exchangeable zinc in the plough layer of the lime concretion black soil area accounts for 0.41% of the total zinc content, and the total zinc content in the soil at a depth of 0~200 cm slightly changes. This study indicates that the fluvo-aquic soil in the study area has rich total zinc and moderate available zinc and that the available zinc content is mainly restricted by the pH of soil. Therefore, applying conditioners to reduce the pH of soil is an effective way to enhance the bioavailability of zinc in the total-zinc-rich fluvo-aquic soil.
Peng-Fei LI,Hou-Chun GUAN,Xiang WANG, et al. The distribution and influencing factors of zinc in the fluvo-aquic soil and the lime concretion black soil in northern Anhui Province[J]. Geophysical and Geochemical Exploration,
2022, 46(6): 1545-1554.
Statistical results of characteristic parameters of soil zinc content in the study area
Percentage of soil area rich in total zinc and deficient in total zinc
Percentage of soil area rich in effective zinc and deficient in total zinc
Spatial distribution characteristics of total zinc in surface soils in the study area
Spatial distribution characteristics of available zinc in surface soils in the study area
指标
全P
有效P
全Mn
有效Mn
全Zn
有效Zn
TFe2O3
硅铝率
有机质
pH值
全P
1.000
有效P
0.251*
1.000
全Mn
0.479**
-0.153
1.000
有效Mn
0.210**
-0.094
0.849**
1.000
全Zn
0.793**
-0.133
0.659**
0.380**
1.000
有效Zn
-0.019
0.642**
-0.170
-0.030
-0.203
1.000
TFe2O3
0.595**
-0.008
0.287**
0.055
0.562**
-0.099
1.000
硅铝率
-0.534**
0.013
-0.265*
-0.022
-0.505**
0.153
-0.974**
1.000
有机质
0.598**
0.453**
0.342**
0.166
0.483**
0.353**
0.288**
-0.225**
1.000
pH值
0.367**
-0.622**
0.328**
0.092
0.525**
-0.607**
0.480**
-0.474**
-0.115
1.000
The correlation coefficient between zinc content and the main physical and chemical indexes in surface soil(lime concretion black soil)of Maotang Formation
指标
全P
有效P
全Mn
有效Mn
全Zn
有效Zn
TFe2O3
硅铝率
有机质
pH值
全P
1.000
有效P
0.282**
1.000
全Mn
0.264**
-0.205*
1.000
有效Mn
0.025
-0.202*
0.786**
1.000
全Zn
0.395**
-0.076
0.888**
0.659**
1.000
有效Zn
0.143
0.630**
-0.124
-0.109
0.080
1.000
TFe2O3
-0.155
-0.200*
0.358**
0.327**
0.333*
-0.230*
1.000
硅铝率
0.101
0.205*
-0.380**
-0.337**
-0.360**
0.259**
-0.983**
1.000
有机质
0.395**
0.195*
0.379**
0.219*
0.438**
0.174
0.133
-0.147
1.000
pH值
0.043
-0.634**
0.162
0.124
0.175
-0.518**
0.211*
-0.250**
-0.240*
1.000
The correlation coefficient between zinc content and the main physical and chemical indexes in surface soil(fluvo-aquic soil)of Bengbu formation
采样 深度/cm
岩性
全Zn
类别
各形态Zn含量及其比例
水溶态
离子 交换态
碳酸盐 结合态
腐殖酸 结合态
铁锰氧化物 结合态
强有机 结合态
残渣态
0~20
粉质黏土
116.7
含量/10-6
0.07
0.27
9.73
10.64
27.57
7.90
60.56
比例/%
0.06
0.23
8.34
9.11
23.62
6.77
51.88
20~40
黏土
91.5
含量/10-6
0.06
0.13
6.99
5.05
16.29
7.16
55.78
比例/%
0.06
0.15
7.64
5.52
17.81
7.83
60.99
40~60
黏土
89.9
含量/10-6
0.05
0.11
4.27
3.39
8.89
5.19
68.01
比例/%
0.06
0.12
4.75
3.77
9.89
5.77
75.65
60~85
黏土
74.7
含量/10-6
0.02
0.16
1.85
1.91
7.06
4.63
59.03
比例/%
0.02
0.21
2.48
2.56
9.45
6.21
79.07
85~100
粉质黏土
45.9
含量/10-6
0.01
0.15
1.24
1.87
4.48
3.62
34.51
比例/%
0.03
0.33
2.70
4.08
9.76
7.89
75.22
100~120
黏土
41.7
含量/10-6
0.00
0.19
1.13
1.82
3.73
3.31
31.49
比例/%
0.00
0.46
2.71
4.38
8.95
7.93
75.57
120~140
黏土
61.6
含量/10-6
0.00
0.21
0.83
1.44
3.81
3.83
51.44
比例/%
0.00
0.34
1.35
2.34
6.19
6.21
83.56
140~170
黏土
60.7
含量/10-6
0.01
0.23
0.65
1.48
4.84
3.96
49.54
比例/%
0.02
0.37
1.08
2.44
7.98
6.52
81.60
170~200
黏土
61.0
含量/10-6
0.00
0.22
0.91
1.37
4.29
3.43
50.79
比例/%
0.00
0.35
1.50
2.25
7.04
5.62
83.24
The zinc content of each form and its proportion in total zinc in each layer of fluvo-aquic soil
采样 深度/cm
岩性
全Zn
类别
各形态Zn含量及比例
水溶态
离子 交换态
碳酸盐 结合态
腐殖酸 结合态
铁锰氧化物 结合态
强有机 结合态
残渣态
0~20
粉质黏土
54.0
含量/10-6
0.08
0.14
1.22
1.83
4.78
6.30
39.69
比例/%
0.15
0.26
2.25
3.39
8.84
11.66
73.45
20~40
黏土
52.2
含量/10-6
0.02
0.16
1.29
1.52
4.66
5.22
39.36
比例/%
0.04
0.31
2.46
2.92
8.92
9.99
75.37
40~60
黏土
53.0
含量/10-6
0.01
0.24
1.10
1.19
4.38
5.57
40.51
比例/%
0.01
0.45
2.07
2.24
8.26
10.51
76.46
60~80
黏土
51.0
含量/10-6
0.01
0.31
0.97
1.10
3.94
5.50
39.19
比例/%
0.02
0.61
1.91
2.16
7.72
10.78
76.80
80~100
黏土
58.4
含量/10-6
0.04
0.44
0.60
1.24
5.54
5.62
44.91
比例/%
0.07
0.76
1.03
2.12
9.49
9.63
76.90
100~120
黏土
59.5
含量/10-6
0.06
0.54
1.34
1.00
7.49
5.00
44.05
比例/%
0.10
0.91
2.25
1.69
12.59
8.41
74.05
120~160
粉质黏土
54.9
含量/10-6
0.02
0.61
0.84
1.30
5.76
5.10
41.27
比例/%
0.04
1.10
1.53
2.36
10.50
9.29
75.19
160~200
粉质黏土
57.5
含量/10-6
0.01
0.28
0.96
1.29
6.22
5.71
43.07
比例/%
0.01
0.48
1.66
2.24
10.81
9.93
74.87
The zinc content of each form and its proportion in total zinc in each layer of lime concretion black soil
Vertical distribution of zinc and other elements in fluvo-aquic soil area
Vertical distribution of zinc and other elements in lime concretion black soil area
Xie W, Yang Y D, Hou J Y, et al. Studies on causes and influential factors of selenium-enriched soils in Jizhou district of Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1373-1381.
Wu J. Selenium,zinc element geochemical characteristics and land resource zoning in Ruijin soil,Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2019.
Liao Q L, Cui X D, Huang S S, et al. Elemental geochemistry of Selenium-enriched soil and its main origin in Jiangsu Province[J]. Geology in China, 2020, 47(6):1813-1825.
Li P F, Liu C, Tao C J, et al. Spatial distribution and source analysis of heavy metal pollution in soils around recycled lead industrial park[J]. Geoscience, 2020, 34(4):663-671.
Zhou M, Tang Z M, Zhang M, et al. Selenium contents of rice and rhizosphere soil and threshold value of selenium-rich soil in Ganzhou of Jiangxi Province[J]. Geological Bulletin of China, 2021, 40( 4) : 604-609.
Wu X S. Characteristics and genesis of selenium-rich soil in Wuping area,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3),778-784.
She X, Wang Z H, Ma X L, et al. Variation of winter wheat grain zinc concentration and its relation to major soil characteristics in drylands of the loess plateau[J]. Scientia Agricultura Sinica, 2017, 50(22):4338-4349.
[9]
Bouis H E, Eozenou P, Rahman A. Food prices,household income,and resource allocation: Socioeconomic perspectives on their effects on dietary quality and nutritional status[J]. Food and Nutrition Bulletin, 2011, 32(s1): S14-S23.
[10]
Ma G S, Jin Y, Li Y P, et al. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy ?[J]. Public Health Nutrition, 2008, 11(6): 632-638.
[11]
Bouis H E, Saltzman A. Improving nutrition through biofortification: A review of evidence from Harvest Plus,2003 through 2016[J]. Global Food Security, 2017, 12:49-58.
Guan H C. A report of 1∶50000 comprehensive geological survey in the area covered by the Wanchudianji,Gaofuji,Jiangji and Wangdingji maps of Anhui[R]. Geological survey institute of Anhui province, 2021.
[13]
佘旭. 旱地田块间小麦籽粒锌含量差异的原因分析[D]. 杨凌: 西北农林大学, 2017.
[13]
She X. Reasons for wheat grain zinc difference among fileds in dryland areas[D]. Yangling: Northwest A&F University, 2017.
Wei S Q, Chen S R, Liu C. The study on the zinc morphology and contents of purpie soils in Sichuan[J]. Journal of Southwest Agriculture University, 1990, 12(6): 600-603.
Huang T M, Wang Z H, Huang Q N, et al. Causes and regulation of variation of zinc concentration in wheat grains produced in Huanghuai wheat production region of China[J]. Acta Pedologica Sinica, 2020, 58(6):1496-1506.
Lu X C. Effect of zinc fertilization to soil on zinc nutritional quality of winter wheat and zinc fractions and transformation in potentiallty Zn-deficient soil[D]. Yangling: Northwest A&F University, 2012.
Zhang W. The mechanisms of zinc uptake and accumulation in wheat and maize as affected by phosphorus levels[D] .Beijing: China Agricultural University, 2017.
Chen F R, Li P F, Du G Q, et al. A report on the results of multi-target geochemical surveys in the Huaibei-Bozhou area of Anhui[R]. Geological survey institute of Anhui province, 2017.
Zhao J, Shi H D, Wu X, et al. Study on spatial distribution of zinc in soils in Zunyi City,China[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 298-303.
Liu Z J, Huang L, Li F, et al. Effect of long-term fertilization on the composition and evolution of clay minerals in soil particles[J]. Acta Mineralogica Sinica, 2018, 39(5):563-571.
Gao B M, Wu J M, Gao X B. Absorptive fixation and effective factors of Zinc in soil[J]. Journal of Shandong Agricultural University, 1987, 18(2):25-32.
Zhang H M, Lu J L, Xu M G, et al. Research progress on the influence of soil properties on zinc adsorption[J]. Journal of Northwest A & F University:Natural Science Edition, 2006, 34(5):114-118.
Yao M. Study on charaeters of zinc adsorption-desorption of the principal types soil at Yangtze River Delta[D]. Nangjing: Nanjing Tech University, 2005.
Li P F, Du G Q, Liu C, et al. Study on soil acidity and basicity characteristics and acidification trend of farmland in Huaibei plain of Anhui Province[J]. East China Geology, 2019, 40(3):234-240.
Liu H M, Zhang X C, Su S H, et al. Available zinc content and related properties of main soil in the loess plateau[J]. Journal of Agro-Environment Science, 2018, 27(3):898-902.
Cai K, Zhang Q, Wu Y X, et al. Speciation distribution and its influencing factors of Cd,Cr,Pb,As,Hg in farmland soil from Heibei Plain,China[J]. Asian Journal of Ecotoxicology, 2017, 12(2):155-168.
Yang H F, Zhen Q, Yan M, et al. Study on the form distribution of heavy metals Cu,Cd,Zn in Shajiang black soil and soil enzyme activities[J]. Chinese Journal of Soil Science, 2007, 38(1):111-115.