Application of the geochemical block method to the assessment of copper resources in Ethiopia
XIANG Wen-Shuai1(), BAI Yang2(), JIANG Jun-Sheng1, LEI Yi-Jun1, HUNDIE Melka3, SISAY Degu3, ZHANG Yuan-Pei2, WU Ying2, ZHENG Xiong-Wei2
1. Wuhan Center, China Geological Survey,Central South China Innovation Center for Geosciences, Wuhan 430205, China 2. Geophysical Exploration Brigade, Hubei Geological Bureau, Wuhan 430056, China 3. Ethiopian Geological Survey, Addis Ababa 999047, Ethiopia
Low-density geochemical mapping is characterized by high order streams to be sampled and a large coverage area and can be used to effectively trace geochemical blocks with high metal contents. Based on the 1:1,000,000 low-density geochemical mapping data of Ethiopia and the processing of the testing data of Cu in the original stream sediments, this study calculated the anomaly threshold of Cu at 37×10-6 through iterative deletion. Then, this study delineated three geochemical blocks and two regional anomalies with 37×10-6, 42×10-6, 47×10-6, 52×10-6, 59×10-6, and 66×10-6 as grading intervals. It calculated the mineralization coefficient of Cu ore bodies in the study area at 0.055% by referencing the known reserves of Cu deposits in geochemical blocks with a high level of copper exploration in the same metallogenic belt. Moreover, this study estimated the Cu resources in the study area at 2,600,000 t based on a rock mass thickness of 1,000 m. By combining the analysis of metallogenic geological conditions, this study determined that the zones where geochemical blocks nos. 2, 3, and 4 are located can be considered key metallogenic prospect areas for further detailed exploration.
Wen-Shuai XIANG,Yang BAI,Jun-Sheng JIANG, et al. Application of the geochemical block method to the assessment of copper resources in Ethiopia[J]. Geophysical and Geochemical Exploration,
2023, 47(4): 845-855.
Brief geology and mineral map of Eritrea-North Ethiopia(revised according to reference [20])
元素
数据量
最小值/10-6
最大值/10-6
四分位值/10-6
平均值/10-6
标准差/10-6
25%
50%
75%
Cu
839
1.9
137.4
12.7
20.5
31.4
25.1
17.7
元素
剔除3倍离差后
浓度分带/10-6
平均值/10-6
标准差/10-6
1级
2级
3级
4级
5级
6级
Cu
22.9
14.1
37
42
47
52
59
66
Processed geochemical statistic characteristics of copper and content level of the geochemical blocks
Distribution of copper geochemical blocks and regional anomalies in study area
Internal structure of No.2 copper geochemical block (a~f is first to sixth level content, including 1,1,4,4,4,4 child geochemical blocks respectively)
Internal structure and Family tree diagram of No.1 copper geochemical block (a~d is first to fourth level content,includig 1,4,1,1 child geochemical blocks respectively)
No.2 geochemical block and brief regional geology and mineral map
编号
面积/ km2
Cu最大 值/10-6
Cu最小 值/10-6
Cu平均 值/10-6
Cu供应 量/万t
1
3424
89.4
18.3
51.8(n=20)
47711
2
19009
137.4
23.6
55(n=53)
281238
3
9529
88.4
18.4
47.3(n=19)
121244
4
2592
78.2
40.8
63.5(n=7)
44275
Statistic characteristic of copper geochemical blocks
编号
Cu面积/ km2
Cu最大 值/10-6
Cu最小 值/10-6
平均值/ 10-6
Cu供应 量/万t
I
458
76.7
48.7
62.7(n=2)
7725
II
359
66.9
43.1
53.9(n=4)
5205
Statistic characteristic of copper regional geochemical anomalies
Wang X Q, Shen W J, Zhang B M, et al. Relationship of grochemical blocks and ore districts: Examples from Eastern Tianshan metallogenic belt,Xinjiang,China[J]. Earth Science Frontiers, 2007, 14(5):116-123.
Zhou Z Q, Li W, Qian J M. Characteristics of geochemical blocks and ore prospecting implications in Zhejiang Province[J]. Resources Survey and Environment, 2015, 36(1):36-41.
Fan B C, Zhang J, Meng G L. An assessment of lithium resource potentiality in Pamir syntax—Based on 1:1 million scale of geochemical survey[J]. Northwestern Geology, 2022, 55(1):156-166.
Xiang W S, Jiang J S, Zhao K. The application of geochemical blocks methods to gold resource assessment in Eritrea[J]. China Mining Magazine, 2019, 28(12):176-182.
Gao C L, Dang W M, Tian S X, et al. Geological characteristics and general condition of mineral resources in Ethiopia[J]. Shandong Land and Resources, 2010, 26(11):19-27.
[12]
Hamimi Z, Fowler A R, Liégeois J P, et al. The geology of the Arabian-Nubian shield[M]. Cham:Springer, 2021.
Bai L W. Geological modeling and mining design application by three-dimensional software in Harvest gold and copper polymetallic deposit in Ethiopia[J]. Mineral Exploration, 2021, 92(8):1852-1860.
Xu M Z, Feng Z C, Liang S Y, et al. Overview of the minerals distributions and tentative discussion on themetallogenic prospecting direction in Ethiopia[J]. Mineral Exploration, 2019, 70(10):2674-2690.
[16]
Woldegabriel G, Aronson J, Walter R C. Geology,geochemistry and rift basin development in the central sector of the Main Ethiopian Rift[J]. Geological Society of America Bulletin, 1990, 102: 439-458.
Chen S, Han S L. Genesis and mineralogy of pyrite in the VMS copper-gold deposit in Shirui area,Ethiopia[J]. Mineral Exploration, 2020, 79(7):1422-1427.
[18]
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[18]
Chi Q H, Yan M C. Element abundance data manual for Applied Geochemistry[M]. Beijing: Geological Publishing House, 2007.
Jin X, Yang G, Xiao G Q, et al. Application of Geochemical blocks methods to strata-bound copper resources assessment in the central Yunnan province[J]. Geological Science and Technology Information, 2012, 31(4):33-39.
[20]
Johnson P R, Zoheir B A, Ghebreab W, et al. Gold-bearing volcanogenic massive sulfides and orogenic gold deposits in the Nubian shield[J]. South African Journal of Geology, 2017, 120(1):63-76.
Liu D W, Xie X J, Yan G S, et al. The application of geochemical blocks methods to gold resources assessment in Shandong Province[J]. Acta Geoscientia Sinica, 2002, 23(2):169-174.
[22]
De Souza Filho C R, Drury S A. A Neoproterozoic supra-subduction terrane in northern Eritrea,NE Africa[J]. Journal of the Geological Society, 1998, 155(3):551-566.
[23]
Fritz H, Abdelsalam M, Ali K, et al. Orogen styles in the East African Orogen:A review of the Neoproterozoic to Cambrian tectonic evolution[J]. Journal of African Earth Sciences, 2013, 86:65-106.
[24]
Kebede T, Koeberl C, Koller F. Geology,geochemistry and petrogenesis of intrusive rocks of the Wallagga area,Western Ethiopia[J]. Journal of African Earth Sciences, 1999, 29(4):715-734.
[25]
Johnson T E, Ayalew T, Mogessie A, et al. Constraints on the tectonometamorphic evolution of the Western Ethiopian Shield[J]. Precambrian Research, 2004, 133:305-327.
[26]
Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian shield:A review of depositional,plutonic,structural,and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61:167-232.
Xiang W S, Zhao K, Zeng G P, et al. Geology of VMS deposits in Northeast Africa and their research progress[J]. Geological Bulletin of China, 2022, 41(1):129-140.
[28]
Xie X J, Liu D W. Geochemical blocks for predicting large ore deposit--concept and methodology[J]. Journal of Geochemical Exploration, 2004, 84(2):77-91.
Jiang W C, Zhang Y J, Tan N, et al. Progress of geological study in Asmara copper-gold polymetallic metallogenic belt,Eritrea[J]. Mineral Exploration, 2017, 8(4):700-707.
Qiu Z J, Fan H R, Cong P Z, et al. Recent progress in the study of ore-forming processes of orogenic gold deposits[J]. Mineral Deposits, 2015, 34(1):21-38.
Ma Y. Geological and geochemical characteristics of Adi Bladia copper polymetallic deposits in North Ethiopia[D]. Kunming: Kunming University of Science and Technology, 2013.
[33]
Stern R J. ARC assembly and continental collision in the Neoproterozoic east African orogen:Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1):319-351.