|
|
A key seismic processing technique for deep geothermal exploration in igneous province in southern China |
ZHENG Hao( ), CUI Yue, XU Lu, QI Peng |
SINOPEC Geophysical Research Institute Co.,Ltd.,Nanjing 211103,China |
|
|
Abstract Southern China's igneous province,as a significant geothermal resource area in China,possesses abundant geothermal resources owing to its favorable accumulation conditions for medium-to-high temperature geothermal resources.However,gravity-magnetic-magnetotelluric exploration methods fail to sufficiently characterize the formation structures,geothermal reservoir boundaries,and the spatial distribution of geothermal reservoirs within the concealed fault zones,posing challenges in exploring deep geothermal resources.Hence,this study delved into the key seismic processing techniques for deep geothermal exploration based on 3D seismic exploration data,establishing a targeted processing flow.First,the problem of low signal-to-noise ratios in deep layers was solved through fine-scale preprocessing for deep geothermal reservoirs,laying a solid data foundation.Then,a high-precision velocity model was built via fault-guided tomography velocity modeling.Finally,the high-precision imaging of deep geothermal reservoirs was achieved using the amplitude-preserving low-frequency reverse-time migration technology,thus improving the imaging quality and the characterization accuracy of geothermal reservoir spaces and high-steep boundaries.Field data-based testing verified the validity and practicability of the processing flow.
|
Received: 03 April 2023
Published: 26 February 2024
|
|
|
|
|
|
Kinds of noises exist in seismic data of Southern China
|
|
Workflow of seismic data denoising
|
|
Comparison of surface wave noise before(a) and after(b) suppression
|
|
Comparison of abnormal amplitude noise before(a) and after(b) suppression
|
|
Comparison of irregular coherent noise before(a) and after(b) suppression
|
|
Comparison of matching pursuit Fourier interpolation before(a) and after(b) application
|
|
Workflow of fault-guided velocity tomography
|
|
Comparison of velocity iterative update a—initial velocity model;b—large-scale velocity update without fault constraint;c—small-scale velocity update with fault constraint
|
|
Comparison of CIGs corresponding to the iterative process a—CIGs of initial velocity model;b—CIGs of large-scale velocity without fault constraint;c—CIGs of small-scale velocity with fault constraint
|
Fig.8a);b—PSDM section by updated velocity model(Fig.8c) ">
|
Comparison of PSDM sections corresponding to the initial velocity and the updated velocity a—PSDM section of initial velocity model(Fig.8a);b—PSDM section by updated velocity model(Fig.8c)
|
|
Comparison of Kirchhoff migration(a) and RTM migration(b)
|
|
The key processing flow for deep geothermal imaging(the yellow position in the figure is the key technology)
|
|
Boundary imaging comparison of previous imaging results(a) and current imaging results(b)
|
|
Basement insider imaging comparison of previous imaging results(a) and current imaging results(b)
|
[1] |
滕吉文, 司芗, 庄庆祥, 等. 福建陆缘壳幔异常结构与深部热储潜能分析[J]. 科学技术与工程, 2017, 17(17):6-38.
|
[1] |
Teng J W, Si X, Zhuang Q X, et al. Abnormal structure of crust and mantle and analysis of deep thermal potential in Fujian continental margin[J]. Science Technology and Engineering, 2017, 17(17):6-38.
|
[2] |
张健, 王蓓羽, 唐显春, 等. 华南陆缘高热流区的壳幔温度结构与动力学背景[J]. 地球物理学报, 2018, 61(10):3917-3932.
|
[2] |
Zhang J, Wang B Y, Tang X C, et al. Temperature structure and dynamic background of crust and mantle beneath the high heat flow area of the South China continental margin[J]. Chinese Journal of Geophysics, 2018, 61(10):3917-3932.
|
[3] |
王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
|
[3] |
Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of Huangniqiao area,Ninghua County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):576-582.
|
[4] |
范艳霞, 李海龙, 张军龙, 等. 东南沿海黄沙洞地热田地应力与控热构造研究[J]. 地球物理学报, 2022, 65(10):3944-3961.
|
[4] |
Fan Y X, Li H L, Zhang J L, et al. Research on the in situ stress state and the geothermal-controlling structure of the Huangshadong Geothermal Field in the Southeast Coast of China[J]. Chinese Journal of Geophysics, 2022, 65(10):3944-3961.
|
[5] |
Panea I, Negut A, Mocanu V. The relationship between the deep faults and the geothermal structures identified on the Moesian Platform territory[C]// SEG Technical Program Expanded Abstracts 2011.Society of Exploration Geophysicists, 2011.
|
[6] |
Saad O M, Chen Y K. Deep denoising autoencoder for seismic random noise attenuation[J]. Geophysics, 2020, 85(4):V367-V376.
|
[7] |
Shan W J, Wang Y Q, Lu W K. ECA-UNet:Denoise seismic data by learning from traditional method[C]// First International Meeting for Applied Geoscience & Energy Expanded Abstracts.Denver,CO and virtual.Society of Exploration Geophysicists, 2021.
|
[8] |
石战战, 庞溯, 王元君, 等. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6):1444-1453.
|
[8] |
Shi Z Z, Pang S, Wang Y J, et al. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1444-1453.
|
[9] |
崔亚彤, 王胜侯, 蔡忠贤. 基于快速自适应非局部均值滤波的地震随机噪声压制方法[J]. 物探与化探, 2022, 46(5):1187-1195.
|
[9] |
Cui Y T, Wang S H, Cai Z X. Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1187-1195.
|
[10] |
杜耀斌, 曾庆才. 塔里木盆地河南探区地震资料处理方法研究[J]. 新疆石油地质, 2006, 27(1):53-55.
|
[10] |
Du Y B, Zeng Q C. Study of the methods for seismic data processing in Henan prospecting area in Tarim Basin[J]. Xinjiang Petroleum Geology, 2006, 27(1):53-55.
|
[11] |
徐颖, 刘晨, 吕秋玲, 等. 多域组合去噪技术在塔中奥陶系低信噪比资料处理中的应用[J]. 石油物探, 2015, 54(2):172-179,196.
|
[11] |
Xu Y, Liu C, Lyu Q L, et al. Application of multi-domain composite denoising technology for the processing of Ordovician low SNR seismic data in Tazhong Area[J]. Geophysical Prospecting for Petroleum, 2015, 54(2):172-179,196.
|
[12] |
王立歆, 李海英, 李弘, 等. 复杂地质条件下超深层碳酸盐岩断控缝洞体成像及预测技术[J]. 石油物探, 2022, 61(5):865-875.
|
[12] |
Wang L X, Li H Y, Li H, et al. Imaging and prediction technology of fault-karst reservoirs in ultra-deep carbonate rocks under complex geological conditions[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):865-875.
|
[13] |
Cai J X, Zheng H. Gaussian beam velocity tomography based on azimuth-opening angle domain common imaging gathers[J]. Journal of Geophysics and Engineering, 2019, 16(5):992-1008.
|
[14] |
Karastathis V K, Papoulia J, Di Fiore B, et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece,using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research, 2011, 206(3/4):106-120.
|
[15] |
Toksoz M N. Geothermal reservoir characterization using passive seismic tomography:A case history[C]// Istanbul: International Geophysical Conference and Oil & Gas Exhibition,Society of Exploration Geophysicists and the Chamber of Geophysical Engineers of Turkey, 2012:1-4.
|
[16] |
张在金, 陈可洋, 范兴才, 等. 井控与构造约束条件下的网格层析速度建模技术及应用[J]. 石油物探, 2020, 59(2):208-217.
|
[16] |
Zhang Z J, Chen K Y, Fan X C, et al. Seismic wave velocity modelling through grid tomography inversion constrained by well logging and structural modeling[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):208-217.
|
[17] |
郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2):372-380.
|
[17] |
Zheng H, Cai J X, Wang J B. Gaussian beam tomography with structure-filtering and its applications[J]. Geophysical and Geochemical Exploration, 2020, 44(2):372-380.
|
[18] |
郑浩, 刘俊辰, 万城程. 基于断裂属性约束的深度域层析速度建模技术[J]. 石油物探, 2021, 60(4):556-564,573.
|
[18] |
Zheng H, Liu J C, Wan C C. Fault-constrained velocity tomography in the depth domain[J]. Geophysical Prospecting for Petroleum, 2021, 60(4):556-564,573.
|
[19] |
刘守伟, 王华忠, 陈生昌, 等. 三维逆时偏移GPU/CPU机群实现方案研究[J]. 地球物理学报, 2013, 56(10):3487-3496.
|
[19] |
Liu S W, Wang H Z, Chen S C, et al. Implementation strategy of 3D reverse time migration on GPU/CPU clusters[J]. Chinese Journal of Geophysics, 2013, 56(10):3487-3496.
|
[20] |
张慧宇, 王立歆, 孔祥宁, 等. 适于大规模数据的逆时偏移实现方案[J]. 物探与化探, 2015, 39(5):978-984.
|
[20] |
Zhang H Y, Wang L X, Kong X N, et al. The implementation scheme of reverse-time migration for mass seismic data[J]. Geophysical and Geochemical Exploration, 2015, 39(5):978-984.
|
[21] |
刘立民, 刘定进, 李博. 起伏地表谱元逆时偏移方法[J]. 石油物探, 2021, 60(2):312-322.
|
[21] |
Liu L M, Liu D J, Li B. Reverse time migration for irregular topography based on spectral element method[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):312-322.
|
[1] |
Cheng Zheng-Pu, Lian Sheng, Wei Qiang, Hu Wen-Guang, Lei Ming, Li Shu. Research on time-frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1400-1409. |
[2] |
ZHANG Min, DENG Dun, LI San-Fu, SHI Wen-Ying, ZHANG Xing-Yan, ZHI Ling. Critical processing techniques for ocean bottom node data of the diapir fuzzy zone of the Dongfang 1-1 structure and their application[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1456-1466. |
|
|
|
|