多特征、多方法融合的高分辨率影像道路网提取
信息工程大学数据与目标工程学院,郑州 450001
Extracting road networks from high-resolution remote sensing images using multi features and methods
Data and Target Engineering College, Information Engineering University, Zhengzhou 450001, China
通讯作者: 曹帆之(1992-),男,硕士,助理工程师,主要从事遥感图像处理方面的研究。Email:513572289@qq.com。
责任编辑: 李瑜
收稿日期: 2017-02-24 修回日期: 2017-05-21 网络出版日期: 2018-09-15
基金资助: |
|
Received: 2017-02-24 Revised: 2017-05-21 Online: 2018-09-15
作者简介 About authors
李润生(1985-),男,博士,讲师,主要从事遥感技术应用方面的研究。Email:xdlxy2171li@163.com。 。
高分辨率影像上道路表现为宽度近似不变的条带状同质区域。根据此特征,提出了一种融合多特征、多方法的高分辨率影像道路网自动提取方法。该算法首先采用均值漂移聚类对图像稳态点图进行分类; 然后运用Gabor滤波及张量编码,以线性显著性最大为准则识别道路中心点类; 最后,运用张量投票和连通成分分析完成道路段连接及道路网组网。试验结果表明该方法能够准确、完整地提取高分辨率影像上道路网,提取的完备性和准确度优于对比算法。
关键词:
Roads on the high-resolution remote sensing images perform the stripe homogeneous region with ribbon-like shape and approximate width. According to these features, this paper presents a simple yet effective method of delineating road networks from high-resolution remote sensing images, which combines multi features and methods. The proposed method consists of three main steps. First, the mean shift algorithm is utilized to detect the modes of density of image points in spectral-spatial space which contain potential road center points and then detected mode points are classified into different classes by mean shift-based clustering on the basis of spectral information. Next, the combination of Gabor filtering and tensor encoding is used to identify the road class and to extract road center points. Lastly, road network is generated from detected road center points by means of tensor voting and connected component analysis. The experimental results demonstrate good performances of the proposed method in road network extraction, much better than the method proposed by Miao et al.
Keywords:
本文引用格式
李润生, 曹帆之, 曹闻, 王淑香.
LI Runsheng, CAO Fanzhi, CAO Wen, WANG Shuxiang.
0 引言
基于区域的提取方法是目前最常用的道路网提取算法。这类方法通过影像分类或图像分割完成道路网的粗提取,然后根据某些规则进行细化操作,最终完成道路网的提取。Song等运用支持向量机根据光谱信息从影像上提取道路类,但由于遥感影像上存在同物异谱和异物同谱等问题,这种方法很难取得令人满意的分类结果[9]。基于此原因,史文中等人同时利用空间-光谱信息和道路同质属性进行道路分类,达到了不错的效果[10,11,12]。考虑到高分辨率遥感影像上的道路特征非常复杂,Das等设计了一种利用显著特征提取道路网的多级框架[13]。在以上方法中,概率支持向量机被用来完成分类任务。但在道路提取中所使用的分类方法大都为监督分类,因此为了达到理想的分类精度,需要大量的训练样本。由于影像上的道路复杂多变,这些算法只能在某类遥感影像上针对特定道路展示出优良的性能,但却无法适用于其他类型的道路。因此如何定义普适性的道路特征仍有待进一步研究。高分辨率影像上道路呈现为具有同质性特征的条带状目标,在空间分布上道路目标自身具有最大的相似性,而与周围其他地物具有最大的差异性。另外,高分辨率影像上地物存在同物异谱或异物同谱现象,仅用单一特征和技术无法准确提取地物信息,因此融合多特征、多方法获取目标信息是该领域的发展方向。
1 算法基本原理
本文综合利用道路呈现的光谱、空间、同质性、几何等多种特征,提出了一种高分辨率遥感影像道路网自动提取算法。算法运用非监督分类方法完成图像聚类,并利用Gabor滤波和张量编码实现道路类自动识别,因此不需要训练样本; 同时借助感知编组理论从道路类中生成光滑连续且不含毛刺的道路网。首先利用均值漂移算法对遥感影像进行预处理,生成包含道路中心点的稳态点图; 然后采用均值漂移聚类算法对稳态点图进行分类,并运用Gabor滤波和张量编码,以线性显著性最大为准则识别道路中心点类; 最后,运用张量投票和连通成分分析从道路中心点类中生成道路网。算法流程如图1所示。
图1
1.1 图像稳态点图生成
稳态点是d维空间内一系列样本点对应的概率密度函数的局部极值点。本文运用均值漂移算法[14],在5维空间内(由平面坐标空间和光谱空间组成)求解图像点对应概率密度函数的稳态点,生成稳态点图。
式中,w(xi)≥0为权重函数; GH(xi-x)为核函数,即
式中,G(x)是一个单位核函数; H是一个d×d的正定带宽矩阵。
本文所使用的核函数为平面核函数,即
式中,H表示d×d对角带宽矩阵。
图2
根据这一特性,遥感影像上的道路中心点可通过均值漂移算法寻找图像点所对应概率密度函数的稳态点来提取。具体计算过程为: 设xi=(
1.2 基于均值漂移算法的道路中心点聚类
该算法运用均值漂移聚类算法根据光谱特征对稳态点图进行分类,将道路中心点类与其他地物类分离。均值漂移聚类算法是对基于均值漂移的稳态点检测的直接扩充,将在特征空间上收敛于同一稳态点的像元点归作一类。设xi和zi,i=1,...,n,分别为5维图像点和其对应概率密度函数的稳态点,Li为图像点xi的标记。具体计算步骤为:
1)对于图像点xi,运用均值漂移算法计算其对应的稳态点zi。
2)对任意两个稳态点zi和zj,当其平面空间距离小于空间带宽参数hs并且其光谱距离小于光谱距离hr时,合并这两个稳态点,即
3)重复第2)步,直到所有稳态点zi不再发生变化。
4)将剩余稳态点zi作为聚类中心
5)优化处理,排除元素个数小于M的类Ck。
1.3 道路中心点类自动识别
遥感影像上道路线状特征明显,本节主要根据这一特征进行道路中心点类的自动识别。首先运用Gabor滤波从稳态点分类图中提取线状高频信息,然后将提取信息编码为张量形式,最后运用张量运算进行信息分析,提取线状特征。
1.3.1 Gabor滤波
2维Gabor滤波g(x,y)可被定义为
式中,σx和σy分别高斯椭圆函数沿着x轴和y轴方向的标准差; f和θ分别为滤波器的频率和旋转角。由式(4)可知,Gabor滤波实质是关于参数f和θ的函数。通过选择不同参数f和θ,Gabor滤波能够运用卷积运算提取图像上不同朝向的频率信息。因此,Gabor滤波被视为尺寸和角度可调的线或边缘检测器,广泛用于图像处理领域。本文运用一组Gabor滤波器提取稳态点分类图中的线状高频信息,选择均匀分布在区间[0,π]的8个角度θi和5种频率fi作为滤波器参数,总共40个滤波器。
1.3.2 张量编码
式中,λi表示2阶张量的特征值(降序排列);
在式(6)中,(λ1-λ2)
在本文中,算法根据以下规则检测每一类样本点中的曲线点: ①对于每一个曲线点,它的线显著性(λ1-λ2)应该大于它的球显著性λ2; ②对于每一个曲线点,它的线显著性(λ1-λ2)应该是沿着其法线方向的局部极大值点。
1.4 道路网组网
张量投票是由Medioni等人于2000年提出来的一种感知编组方法,被广泛应用于机器视觉和机器学习中[19]。本文运用张量投票算法对道路中心点进行连接生成道路网。
在2维张量投票中,几何信息可通过棍投票(stick voting)进行传递和精炼,而在投票结束之后,便通过投票分析推断几何结构特征(点或线)。图3介绍了棍投票过程,图中O点为投票点,P点为信息接收点,C点为一个同时经过点P和点O的圆的圆心。
图3
投票的显著性衰减函数为
式中,s表示点O,P之间的弧长; k表示曲率,σ为尺度因子,决定了投票的大小。
2 试验及分析
2.1 道路网提取试验
图4
图5
2.2 对比试验
图6
为了评估2种算法提取的精度,使用3种评判指标进行精度衡量,即
式中: TP为正确提取的道路长度; FP为被错误提取的道路长度; FN为未能提取的道路长度。2种方法的评判结果如表1所示。
表1 道路提取精度评判结果
Tab.1
评价结果 | 本文的方法 | Miao等的方法 |
---|---|---|
试验1 | ||
完备性 | 98.2 | 78.9 |
准确度 | 99.0 | 94.9 |
提取精度 | 97.3 | 75.8 |
试验2 | ||
完备性 | 92.8 | 75.6 |
准确度 | 98.5 | 93.0 |
提取精度 | 91.6 | 71.4 |
3 结论
本文提出了一种基于道路同质属性和形状特征的高分辨率遥感影像道路网提取算法,得到如下结论:
1)本文所提出的道路网自动提取算法能够准确地从高分辨率影像上提取道路网。
2)计算时要注意的是算法需要人工设置均值漂移带宽参数。空间带宽参数hs的设置应该大于待提取道路的宽度,以保证算法能够提取较窄道路的中心线。
3)通过试验对比,表明算法展示了良好的道路提取性能,在道路提取的完备性和精度上均优于Miao的算法。从算法计算效率看,本文算法与Miao等所提算法基本持平。
4)但本文算法还存在2个局限: ①当道路网的光谱特征发生变化或者当其他地物具有和道路相似的光谱特性和几何形状时,算法无法准确地提取完整的道路网。②算法需要提前设置带宽参数。
5)下一步可利用道路边界梯度特征,通过少量道路种子点计算不同类型道路宽度,从而达到自动设置带宽参数的目的。另外,将引入道路拓扑结构,增加算法的鲁棒性,同时尽可能地减少人工干预。
参考文献
高分辨率遥感影像目标分类与识别研究进展
[J].
DOI:10.3724/SP.J.1047.2015.01080
URL
Magsci
[本文引用: 1]
高分辨率遥感影像的目标分类与识别,是对地观测系统进行图像分析理解,以及自动目标识别系统提取目标信息的重要手段。本文综述了当前国内外在可见光、红外、合成孔径雷达和合成孔径声纳等遥感影像的目标分类与识别的关键技术和最新研究进展。首先,讨论了高分辨率遥感影像的目标分类与识别问题的主要研究层次和内容;其次,深入分析了高分辨率遥感影像目标分类与识别,在滤波降噪、特征提取、目标检测、场景分类、目标分类和目标识别的关键技术及其所存在的问题;最后,结合并行计算、神经计算和认知计算等技术,讨论了目标分类与识别的可行性方案。具体包括:(1)高性能并行计算在高分辨率遥感图像处理的主流技术,并给出了基于Hadoop+OpenMP+CUDA的高分辨率遥感影像混合并行处理架构;(2)深度学习对于提升目标分类和识别精度的应用前景,以及基于深度神经网络的多层次遥感影像目标识别方法;(3)认知计算在解决遥感影像大数据不确定性分析的模型与算法,并讨论了层次主题模型的多尺度遥感影像场景描述方案。此外,根据媒体神经认知计算的相关研究,探讨了遥感影像大数据的目标分类和识别的发展趋势和研究方向。
Review on high resolution remote sensing image classification and recognition
[J].
从遥感影像提取道路特征的方法综述与展望
[J].
Road feature extraction from remotely sensed image:review and prospects
[J].
形状先验和图割的高分辨率遥感影像道路段提取
[J].<p>给出一种从高分辨率遥感影像中提取道路的方法。先对遥感影像进行滤波预处理获取纹理特征;再以图割解算经典能量函数获取道路图斑,其中利用高斯混合模型构建T链;接着利用直线匹配法获得初始道路段;最后用图割解算融合了两种形状先验的能量函数,结合动态外推的思路连接道路段。对不同遥感影像的实验证明了算法的有效性。</p>
Extracting roads from high-resolution RS images based on shape priors and graph Cuts
[J].
基于高分辨率影像的道路中心线提取技术研究
[J].<p>针对遥感影像道路提取问题,探索了一种基于道路条带自动检测道路中心线的方法。首先基于概率增进树算法获取道路候选点,并通过形态学运算得到光滑和完整的道路条带; 然后结合细化运算自动检测道路中心线。但检测的中心线存在"毛刺"且局部曲率变化过大,不符合道路的形状特征。针对该问题,引入了测地距离理论,并用迭代方法去除"毛刺",获得初始道路中心线; 再通过Dijkstra最短路径算法优化初始结果; 最后根据方向一致性和道路连续性获取最终的道路中心线。采用高分辨率航空影像对上述方法的实验结果证明了该方法的有效性和可行性。</p>
A study of road centerline extraction from high resolution image
[J].
一种基于形状特征进行高分辨率遥感影像道路提取方法
[J].
A method of road extraction from high-resolution remote sensing images based on shape features
[J].
基于形态分割的高分辨率遥感影像道路提取
[J].
DOI:10.3321/j.issn:1001-1595.2004.04.013
URL
[本文引用: 1]
基于灰度形态学,提出一种从高分辨率遥感图像提取道路网络的方法.首先利用灰度形态特征对遥感影像进行分割,进而得到基本的道路网络轮廓.然后在此基础上,利用线段特征匹配方法提取道路网络.提出的方法能适应于从道路和背景区别不很清楚的遥感图像中提取道路.实验结果也表明,本文方法能有效地从遥感影像中提取道路网络.
Road extraction from high-resolution remotely sensed image based on morphological segmentation
[J].
Delineation and geometric modeling of road networks
[J].
DOI:10.1016/j.isprsjprs.2009.10.004
URL
[本文引用: 1]
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
State of the art on automatic road extraction for GIS update:A novel classification
[J].
DOI:10.1016/S0167-8655(03)00164-8
URL
[本文引用: 1]
This paper surveys the state of the art on automatic road extraction for GIS update from aerial and satellite imagery. It presents a bibliography of nearly 250 references related to this topic. The work includes main approaches on general methods of road network extraction and reconstruction, road tracking methods, morphological analysis, dynamic programming and snakes, methods multi-scale and multi-resolution, stereoscopic and multi-temporal analysis, hyper-spectral experiments, and other techniques for road extraction. Likewise, other approaches related in any way with the road extraction topic are also considered. Between them different papers on segmentation, vectorization, optimization, evaluation, semantic nets and neural networks, fusion techniques, fuzzy logic, and other methods are discussed. A novel classification of road extraction methods according to our criteria is included in order to provide a significant contribution to research in this topic.
Road extraction using SVM and image segmentation
[J].
DOI:10.14358/PERS.70.12.1365
URL
[本文引用: 1]
In this paper, a unique approach for road extraction utilizing pixel spectral information for classification and image segmentation-derived object features was developed. In this approach, road extraction was performed in two steps. In the first step, support vector machine (SVM) was employed merely to classify the image into two groups of categories: a road group and a non-road group. For this classification, support vector machine (SVM) achieved higher accuracy than Gaussian maximum likelihood (GML). In the second step, the road group image was segmented into geometrically homogeneous objects using a region growing technique based on a similarity criterion, with higher weighting on shape factors over spectral criteria. A simple thresholding on the shape index and density features derived from these objects was performed to extract road features, which were further processed by thinning and vectorization to obtain rood centerlines. The experiment showed the proposed approach worked well with images comprised by both rural and urban area features.
Spectral-spatial classification and shape features for urban road centerline extraction
[J].
DOI:10.1109/LGRS.2013.2279034
URL
[本文引用: 1]
This letter presents a two-step method for urban main road extraction from high-resolution remotely sensed imagery by integrating spectral-spatial classification and shape features. In the first step, spectral-spatial classification segments the imagery into two classes, i.e., the road class and the nonroad class, using path openings and closings. The local homogeneity of the gray values obtained by local Geary's C is then fused with the road class. In the second step, the road class is refined by using shape features. The experimental results indicated that the proposed method was able to achieve a comparatively good performance in urban main road extraction.
Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines
[J].DOI:10.1109/LGRS.2012.2214761 URL [本文引用: 2]
Road centreline extraction from classified images by using the geodesic method
[J].
DOI:10.1080/2150704X.2014.907935
URL
[本文引用: 1]
This study presents an automatic method for accurate road centreline extraction from classified images. Unlike earlier methods that have mainly relied on the thinning algorithm, the proposed automatic method selects end points from a classified image and then connects them using the geodesic method to formulate the road network. As the proposed method generates the road centreline by tracing along the ridge line of the optimally oriented flux (OOF) measure, this method is able to eliminate undesired spurs while retaining the correct road network topology. Three test images are used to quantitatively evaluate the proposed method. Experiments show that the proposed method yields a substantial improvement over the thinning algorithm.
Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images
[J].DOI:10.1109/TGRS.2011.2136381 URL [本文引用: 1]
均值漂移与卡尔曼滤波相结合的遥感影像道路中心线追踪算法
[J].基于模板匹配的道路追踪方法是道路提取中较实用的一类方法,但传统模板匹配方法主要以相关系数作为相似性测度,对车辆、树荫等遮挡敏感,不适用于高分辨率遥感影像道路提取。针对这一问题,本文采用一种稳健的相似性测度,设计了一种基于均值漂移的道路中心点匹配算法,克服了传统模板匹配对遮挡敏感的缺点;然后运用卡尔曼滤波,实现高分辨率遥感影像道路中心线追踪。试验表明,该方法能够准确提取高分辨率遥感影像道路中心线,对车辆、树荫等遮挡具有稳健性。
Tracking Road centerlines from remotely sensed imagery using mean shift and Kalman filtering
[J].
The estimation of the gradient of a density function,with applications in pattern recognition
[J].DOI:10.1109/TIT.1975.1055330 URL [本文引用: 1]
Mean shift,mode seeking, and clustering
[J].DOI:10.1109/34.400568 URL [本文引用: 1]
Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two-dimensional visual cortical filters
[J].DOI:10.1364/JOSAA.2.001160 URL [本文引用: 2]
Tensor voting: theory and applications
[J].
DOI:10.1109/TPAMI.2011.250
URL
[本文引用: 2]
Abstract We present a unified computational framework which properly implements the smoothness constraint to gen- erate descriptions in terms of surfaces, regions, curves, and labelled junctions, from sparse, noisy, binary data in 2-D or 3-D. Each input site can be a point, a point with an associated tangent direction, a point with an associated normal direction, or any combination of the above. The methodology is grounded on two elements: tensor calculus for representation, and linear voting for communication: each input site communicates its infor- mation (a tensor) to its neighborhood through a pre- defined (tensor) field, and therefore casts a (tensor) vote. Each site collects all the votes cast at its location and encodes them into a new tensor. A local, parallel marching process then simultaneously detects features. The proposed approach is very different from traditional variational approaches, as it is non-iterative. Further- more, the only free parameter is the size of the neigh- borhood, related to the scale. We have developed several algorithms based on the proposed methodology to address a number of early vision problems, including perceptual grouping in 2-D and 3-D, shape from stereo, and motion grouping and segmentation, and the results are very encouraging.
Tensor Voting:A Perceptual Organization Approach to Computer Vision and Machine Learning
[M].
/
〈 |
|
〉 |
