国土资源遥感, 2018, 30(4): 200-205 doi: 10.6046/gtzyyg.2018.04.30

基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降

张晓博1, 赵学胜2, 葛大庆3, 刘斌3, 张玲3, 李曼3, 陈理3

1. 防灾科技学院生态环境学院,廊坊 101601

2. 中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083

3. 中国国土资源航空物探遥感中心,北京 100083

Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique

ZHANG Xiaobo1, ZHAO Xuesheng2, GE Daqing3, LIU Bin3, ZHANG Ling3, LI Man3

1. School of Ecology and Environment, Institute of Disaster Prevention, Langfang 101601, China

2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. China Aero Geophysical Survey and Remote Sensing for Land and Resources, Beijing 100083, China

收稿日期: 2017-04-17   修回日期: 2017-08-2   网络出版日期: 2018-12-15

基金资助: 国家自然科学基金项目“基于改进的高分辨率时序InSAR技术研究Khash Mw7.7地震震后形变机制”资助.  41504048

Received: 2017-04-17   Revised: 2017-08-2   Online: 2018-12-15

作者简介 About authors

张晓博(1989-),女,讲师,主要从事InSAR技术和地表形变监测研究。Email:xiaobozhang1989@hotmail.com。 。

摘要

基于Sentinel-1获取的9景影像,采用新型TOPS成像模式Stacking技术分析淮南矿区地面沉降特征。首先,针对TOPS干涉影像burst间存在相位跳变的问题,采用三步法对影像进行精确配准,配准精度高达0.001个像元; 然后,利用多项式拟合方法消除差分干涉图中的趋势性相位; 最后,基于最小二乘法线性回归得到研究区的沉降速率。沉降结果表明,淮南矿区呈现多个沉降中心,主要分布于研究区的西部和北部,沉降速率在空间上呈不均一分布,最大年沉降速率在80~90 cm/a; 研究区开采沉陷具有幅度大、范围小的特点,沉降幅度在10~80 cm/a间变化,沉降面积占整个研究区面积的3.13%; 矿井地面沉降非线性特征明显,即沉降中心在不同时间段的形变量不同。

关键词: Sentinel-1 ; TOPS模式 ; Stacking技术 ; 淮南矿区 ; 地面沉降

Abstract

This paper presents the subsidence results of the Huainan coal mine from Sentinel-1 TOPS images during the period between November 3, 2015 and March 14, 2016 using Stacking technique. The high accuracy coregistration comprising three steps was firstly used to get differential interferograms without phase jump. Then the trend phase was removed by polynomial fitting, and the subsidence rate was retrieved based on the least squares linear regression method. The subsidence velocity map shows that there are several subsidence centers mainly distributed in the west and the north of the research region. The maximum subsidence rate is 80~90 cm/a, and the subsidence is inhomogeneous spatially. The mining subsidence of the study area has the characteristics of high gradients varying from 10 to 80 cm/a, with small subsidence coverage for only 3.13% of the total area. From the differential interferograms the authors found that the deformation magnitude is variable in different observation spans, which implies the nonlinear characteristics of the mine.

Keywords: Sentinel-1 ; TOPS mode ; Stacking technique ; Huainan coal mine ; ground subsidence

PDF (7268KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 陈理. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降. 国土资源遥感[J], 2018, 30(4): 200-205 doi:10.6046/gtzyyg.2018.04.30

ZHANG Xiaobo, ZHAO Xuesheng, GE Daqing, LIU Bin, ZHANG Ling, LI Man. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(4): 200-205 doi:10.6046/gtzyyg.2018.04.30

0 引言

当巷道上方岩石本身的重量超过了其最大支撑能力,在采煤过程中或采煤完成以后容易发生崩塌。煤矿过度开采引起地面沉降的空间尺度和量级大小一般取决于覆盖深度、上覆地层特征、煤柱尺寸和地形地貌等多种因素[1]。但是,矿区地面沉陷危害性极强,不仅破坏地面建筑、交通和水利等硬件设施,同时还可能危害生态环境。因此,地下煤矿开采引起的地面沉降是采煤企业、政府及社会各界尤需关注的问题。

在淮南煤矿区地面沉降监测的相关研究中,李楠等[2]利用2景PALSAR影像对该区进行形变监测发现,采动区均处在活跃阶段; 张飞[3]和刘文倩[4]利用ENVISAT影像分别监测了淮南矿区2006年11月—2010年3月和2009年12月—2010年3月期间的地面沉降,结果表明该区各个煤矿开采力度都比较大,所造成的地面塌陷比较明显。除此之外,未见利用合成孔径雷达干涉技术(interferometric synthetic aperture Radar,InSAR)监测该地区近期地面沉降的相关研究。

Stacking技术基于多景影像解决常规InSAR面临的干涉失相干和大气延迟的问题,对影像数量要求不太严苛,适用于矿区沉降速率较快并且存档数据较少的情况[5,6]。针对Sentinel-1数据新型TOPS(terrain observation with progressive scans)成像技术,本研究基于数字高程模型(digital elevation model,DEM)配准和burst重叠区配准的方法提高配准精度,并通过模拟多项式去除趋势性相位,获取淮南矿区的沉降速率,分析淮南矿区的沉降特征,以及Sentinel-1数据在该矿区沉降监测中的适用性和局限性。

1 Sentinel-1数据

Sentinel-1是欧空局为哥白尼全球地面观测计划研制的首个空间组件,由2颗C波段合成孔径雷达(synthetic aperture Radar,SAR)成像极轨卫星组成星座[7]。其中,Sentinel-1A于2014年4月发射,Sentinel-1B于2 a后成功发射,目前2颗星均可正常工作,双星重访周期为6 d。Sentinel-1计划的构建基于欧洲遥感卫星计划(European remote-sensing satellite,ERS)和ENVISAT-ASAR传感器,保证了C波段SAR数据的连续性,其应用领域包括土地利用变化、地表形变、水文地质和灾害监测等[8]

Sentinel-1成像模式有stripmap,IW (interferometric wide swath),EW (extra wide swath)和wave4种。其中,IW模式是陆地监测的默认模式,幅宽250 km,地面空间分辨率5 m×20 m,采用新型TOPS成像技术。TOPS是一种通过周期性切换多个相邻条带之间的天线波束获取数据的ScanSAR成像技术,通过减弱扇形边效果提供宽幅和强辐射性影像[9]。TOPS模式旨在取代传统的ScanSAR模式,既能达到ScanSAR同样的影像空间分辨率和覆盖范围,又能得到信噪比均一的影像。TOPS技术除了在距离向控制天线波束,还在方位向上通过电控天线波束转向避免同一子条带中不同burst影像质量不均匀的问题。

2 Stacking技术

合成孔径雷达差分干涉测量技术(differential interferometry SAR,DInSAR)是利用卫星在不同时刻通过同一地区时拍摄的2幅影像,根据卫星飞行参数和相位差计算cm级地表形变[10]。随后发展起来的一些基于多景影像计算形变信息的分析技术,包括Stacking、永久散射体合成孔径雷达干涉测量技术(persistent scatterer interferometric SAR,PSInSAR)和短基线集技术(small baseline subset,SBAS)等,都是通过组合多个干涉图解决常规InSAR面临的干涉失相干和大气延迟的问题,以实现区域高精度测量[11,12,13]。由于PSInSAR技术需要使用大量数据(至少25景影像)估计和修正大气延迟,因此,对影像数量要求不严苛的Stacking技术适用性更广。Stacking技术通过生成的多景差分干涉解缠图估算线性相位速率,实际是基于最小二乘法(least squares,LS)对N组观测值线性回归的过程,估算公式为

ph_rate=j=1NΔtjφj/j=1NΔtj2

式中: Δtj为第j组干涉图的时间基线; φj为第j组解缠的差分干涉相位; ph_rate为线性相位速率。

利用SAR数据提取地表形变信息即是差分干涉相位各分量(形变、地形和大气延迟等)分离的过程,传统的Stacking处理流程主要包括影像配准、干涉对选择、干涉图生成和形变速率估算等步骤。Sentinel-1影像成像方式与以往卫星不同,需要对传统的处理方法进行改进,处理流程如图1所示。

图1

图1   数据处理流程

Fig.1   Data processing flowchart


TOPS影像干涉最大的问题是同一burst存在较大的多普勒中心变化。SAR卫星侧视成像,聚焦后在方位向和距离向均出现相位跳变的现象,因此失配准会导致沿轨道和垂直轨道方向存在相位跳变,然而在同样的配准误差水平下距离向的相位跳变比方位向小,垂直轨道方向的相位跳变可以忽略不计[14,15]。方位向上TOPS每个burst都有不同的线性相位跳变,其斜率取决于多普勒中心频率,方位向失配准引入的TOPS干涉相位偏差公式为[16]

φerr=2πfdcΔt

式中: fdc为多普勒中心变化量; Δt为由配准误差引入的干涉信号的时间偏移。对Sentinel-1而言,TOPSAR方位向天线扫描的多普勒中心变化量约为5.5 kHz,方位向行扫描时间约为0.002 s。根据公式(2),当配准精度小于0.001个像元时,配准误差引入的干涉相位偏差小于4°。

为避免不同burst之间会出现明显的相位跳变现象,利用三步配准法进行主辅影像高精度配准。首先基于地形和轨道参数进行初步配准。影像为三维空间信息在二维平面的展示,成像过程中会出现拉伸、扭转等变换,采用单一的多项式进行配准在边缘误差较大,因此可利用轨道参数和地形数据提炼主辅影像配准的查找表。然后,通过强度互相关最大化的方法估算距离向和方位向的残余偏移量,配准精度达到0.01个像元。精确配准后生成的差分干涉图出现图2(a)的现象,即burst之间的条纹变化不连续,需要进一步基于频谱多样性进行重叠区配准,最终得到图2(b)所示的burst相位跳变消除后的差分干涉图,一个色周表示差分干涉相位从0到2π的变化。

图2

图2   Burst相位跳变消除前后的差分干涉图

Fig.2   Differential interferograms of before and after phase jumps elimination


在干涉处理之前,所有影像都添加了精密轨道参数,但差分干涉图依然存在残余相位,该相位包括轨道误差引入的趋势性相位及对流层和电离层延迟不均匀分布等因素导致的随机相位误差[17]。Stacking技术通过多差分条纹图叠加求平均,将大气信号作为随机误差进行平差去除大气影响引入的相位误差。利用基于二次多项式拟合的方法,减小轨道误差对形变结果精度的影响,模型为

φtrend=a0+a1x+a2y+a3xy+a4x2+a5y2

式中: φtrend为趋势性相位; a0,a1,…,a5为二次多项式系数。

基于小基线原则的Stacking技术,将空间基线阈值设置为100 m,时间基线阈值为36 d,得到12个干涉对。对滤波后的差分干涉图利用最小费用流算法进行相位解缠,然后基于多景解缠的差分干涉图根据公式(1)计算像元的线性相位速率。

3 淮南矿区沉降监测

3.1 矿区概况

淮南矿区位于安徽省北部,横跨淮河两岸,其区域地质构造属华北板块南缘,东起郯庐断裂带,西至阜阳断层,北接蚌埠隆起,南以老人仓—寿县断层与合肥坳陷相邻[18]。矿区有铁路支线与淮南铁路(蚌埠—裕溪口)和津浦铁路接轨,水陆运输都很方便。该矿区由淮南和潘谢2块煤田构成,煤炭储量丰富,总储量占安徽省的74%,占华东地区的50%,且品位优良,被誉为绿色能源。研究区东西长约76 km,南北约35 km,分布了顾桥矿、谢桥矿和张集矿等多个矿井。矿区在植被茂盛的季节相干性较低,因此收集了2015年11月3日—2016年3月14日期间的9景影像。

3.2 沉降结果

淮南矿区的地面沉降主要受煤矿开采活动影响。利用Stacking技术获取该矿区监测期间的沉降速率如图3所示。图中沉降速率为负值表示地面下沉。一些矿井由于长期开采造成地面下沉在低凹积水,后向散射信息较弱; 另外,当矿区沉降中心沉降速率过大时,会出现失相干的现象,导致沉降中心往往只能提取到部分信息。沉降等值面图是通过点插值的方法利用相干性较好点的控制编制的。结果表明,研究区有多个明显的沉降中心,主要分布于西部和北部,沉降速率从边缘到中心逐渐增加,形成椭圆形或圆形。从图3可以看出,最为显著的沉降中心分布在东北方向的潘四井附近,最大沉降速率在80~90 cm/a,该区段内沉降速率大于10 cm/a的区域约1.82 km2; 潘四井东南方向2个沉降区相连接,最大沉降速率在70~80 cm/a,沉降速率超过10 cm/a的区域约2.35 km2; 位于朱集井西部的沉降中心最大沉降速率超过了70 cm/a,沉降速率大于10 cm/a的区域约1.54 km2。研究区南部淮河沿岸出现3个沉降中心,新庄孜矿最大沉降速率约50 cm/a,沉降速率大于10 cm/a的区域约2.25 km2; 望峰岗井沉降区的最大沉降速率在40~50 cm/a,2个连通区沉降速率大于10 cm/a的面积约2.50 km2; 谢桥矿、张集矿、顾桥井、新集矿、潘一矿及潘三矿区域出现多个沉降中心,有的沉降区连成一片,沉降漏斗的边缘最大沉降速率在40~50 cm/a。将研究区2 622 km2范围按照沉降速率进行面积统计,如图4所示。

图3

图3   研究区沉降速率

Fig.3   Subsidence velocity of the research area


图4

图4   研究区沉降面积统计

Fig.4   Subsidence area statistics in study area


图4可知,2015年11月—2016年3月期间,沉降速率为10~30 cm/a的面积约70.63 km2; 在30~60 cm/a之间的沉降面积约10.92 km2; 大于60 cm/a的严重沉降区面积为0.61 km2,约占研究区总面积的3.13%。研究结果表明矿区开采沉陷具有幅度大、沉降范围小的显著特点。

煤矿区地面沉降一般为非线性的过程,将9景影像按时间顺序配对成8组干涉对,分析不同时间段地下采煤引起的地面沉降特征。图5为研究区东北部较严重沉降区的差分干涉条纹图。

图5

图5   不同时间段淮南矿东北区域地表形变差分干涉图

Fig.5   Differential interferograms of the northeastern region of the Huainan coal mine in different periods


除干涉图5(d)和(f)外,其他干涉图的时间基线均为12 d。差分干涉图中,每个条纹表示地表视线向移动量为2.8 cm。与地面沉降速率图相同,最大沉降中心位于潘四井,图5(h)期间的形变量最大达11.2 cm,而干涉图5(b)、(c)和(e)期间形变量较小,约5.6 cm。分布在朱集井西部和潘四井东侧的2个沉降区,在整个观测周期内相干性较好。朱集井西部的沉降区在2幅时间基线较长的干涉图5(d)和(f)中形变量较大,分别为8.4 cm和5.6 cm,其他时间段内的形变量均在2.8 cm以内; 潘四井东侧沉降区在干涉图5(f)中形变量最大达11.2 cm,并且出现多个沉降中心连片的现象。另外,潘一矿和潘三矿附近的部分沉降区受水体影响,相干性较差,干涉条纹均不完整,仅得到沉降中心边缘的形变信息。

4 结论

首次利用新型Sentinel TOPS模式升轨数据基于Stacking技术监测了淮南矿区地面沉降,在研究过程中采用三步法精确配准影像,并利用多项式拟合来消除差分干涉图中的趋势性相位,最后基于最小二乘法线性回归得到了研究区的沉降速率图。主要结论为: 研究区出现了多个沉降中心,主要分布于研究区的西部和北部,沉降速率空间分布不均一,从边缘到中心逐渐增加,形成椭圆形或圆形; 矿井地面沉降非线性特征显著,即沉降中心在不同时间段的形变量不同; Sentinel影像的burst重叠区配准和差分干涉图的趋势性相位去除效果较好; 时间基线为36 d时研究区内有些沉降区失相干现象较严重,因此矿区InSAR监测应根据研究区沉降情况设置合适的时间基线阈值。

另外,根据本文的监测结果对基于Sentinel-1影像监测矿区沉降的适用性和局限性进行总结,包括以下几点:

1)煤矿区一般位于山区或城市郊区,冬季植被较少相干性较好,而夏季植被茂盛相干目标较少,故利用星载SAR数据更适合研究冬季矿区的地面沉降情况。

2)相比于TerraSAR和Radarsat等卫星,Sentinel-1双星重访周期大大缩短,较高的时间采样频率可降低失相干的影响; 影像幅宽较大,空间分辨率适中,利于对井田范围较大的矿区进行沉降监测或区域性的矿区开采调查。

3)Stacking技术主要生成差分干涉图和沉降速率图,差分干涉图的条纹数量直接与主辅影像获取时间段内的形变量有关,条纹越多形变量越大; 沉降速率图是对多景差分干涉图解缠相位线性回归的结果,可反映矿区开采沉陷的严重程度及沉陷范围。

4)形变量结果为雷达视线向形变量,这是InSAR技术固有的局限性,因此利用单一轨道解算沉降速率的前提是假设视线向形变量仅为垂直向形变量沿视线向的分量,即通过投影关系计算沉降速率。

参考文献

Nestbitt A.

Subsidence monitoring West Cliff Colliery longwall 5A4

[C]// Association of Public Authority Surveyors.Wollongong:APAS, 2003: 133-139.

[本文引用: 1]

李楠, 王磊 .

基于D-InSAR技术的老采空区稳定性监测研究

[J]. 矿山测量, 2016,44(3):1-4.

DOI:10.3969/j.issn.1001-358X.2016.03.001      URL     [本文引用: 1]

科学揭示采动区变形规律是开发利用老采空区的核心环节.文中以淮南矿区为例,基于ALOS数据,利用D-InSAR技术和精细化策略,反演了淮南煤矿采动区2008.10.11~2008.11.26时段三维历史变形场.解译结果表明:(1)位于该时段内宏观上监测到10个动态沉陷区;(2)基于ENVI平台分别定量解析了各采动区历史沉降场,实验结果显示采动区日沉降速率为2.04 mm/d~3.65 mm/d,按照1.67 mm/d稳定判别标准,则此十个采动区均处在活跃阶段,最大变形速率发生在8区.文中研究成果对开发利用煤矿采动地基具有重要参考价值.

Li N, Wang L .

Research of coal mining subsidence monitoring based on D-InSAR technology

[J]. Mine Surveying, 2016,44(3):1-4.

[本文引用: 1]

张飞 .

基于DInSAR技术的淮南采煤沉陷区地面沉降监测研究

[D]. 南京:南京大学, 2012.

[本文引用: 1]

Zhang F .

Study on DInSAR Technology of Monitoring Land Subsidence in Huainan Mining Area

[D]. Nanjing:Nanjing University, 2012.

[本文引用: 1]

刘文倩 .

InSAR测量技术在淮南矿区地面沉降监测中的应用

[D]. 合肥:合肥工业大学, 2012.

[本文引用: 1]

Liu W Q .

An Application of InSAR Technology in Ground Subsidence Monitoring in Huainan Coal-mining Area

[D]. Hefei:Hefei University of Technology, 2012.

[本文引用: 1]

Biggs J, Wright T, Lu Z , et al.

Multi-interferogram method for measuring interseismic deformation:Denali Fault, Alaska

[J]. Geophysical Journal International, 2007,170(3):1165-1179.

DOI:10.1111/j.1365-246X.2007.03415.x      URL     [本文引用: 1]

Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 00± 5.0 mm yr 0908081 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2.

Zhao Q, Lin H, Jiang L M.

Ground deformation monitoring in Pearl River Delta region with Stacking D-InSAR technique

[C]// Proceedings of SPIE,Geoinformatics 2008 and Joint Conference on GIS and Built Environment:Monitoring and Assessment of Natural Resources and Environments. 2008,714513:1-9.

[本文引用: 1]

Geudtner D, Torres R, Snoeij P, et al.

Sentinel-1 system

[C]// 2014 10th European Conference on Synthetic Aperture Radar (EUSAR).Berlin:VDE, 2014: 1-3.

[本文引用: 1]

Berger M, Moreno J, Johannessen J A , et al.

ESA’s sentinel missions in support of earth system science

[J]. Remote Sensing of Environment, 2012,120:84-90.

DOI:10.1016/j.rse.2011.07.023      URL     [本文引用: 1]

78 We highlight the usefulness of the Sentinel data stream for advancing Earth System Models. 78 We outline a high-level strategy for the utilization of the Sentinel data stream in the context of ESMs. 78 We show how the Sentinel data stream could be used for improving process understanding and model parameterizing and fostering integrated processing.

Zan F D, Guarnieri A M M.

TOPSAR:Terrain observation by progressive scans

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(9):2352-2360.

DOI:10.1109/TGRS.2006.873853      URL     [本文引用: 1]

In this paper, a novel (according to the authors' knowledge) type of scanning synthetic aperture radar (ScanSAR) that solves the problems of scalloping and azimuth-varying ambiguities is introduced. The technique employs a very simple counterrotation of the radar beam in the opposite direction to a SPOT: hence, the name terrain observation with progressive scan (TOPS). After a short summary of the characteristics of the ScanSAR technique and its problems, TOPSAR, which is the technique of design, the limits, and a focusing technique are introduced. A synthetic example based on a possible future system follows

Gabriel A K, Goldstein R M, Zebker H A .

Mapping small elevation changes over large areas:Differential Radar interferometry

[J]. Journal of Geophysical Research:Solid Earth, 1989,94(B7):9183-9191.

DOI:10.1029/JB094iB07p09183      URL     [本文引用: 1]

A technique that uses synthetic aperture radar (SAR) images to measure very small (1 cm or less) surface motions with good resolution (10 m) over large swaths (50 km) is presented along with experimental results. The method could be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling. The method is based on SAR interferometry, where two images are made of a scene by simultaneously flying two physically separated antennas. Then the phases of corresponding pixels are differenced, and altitude formation is deduced from some simple computation and image rectification. It is also possible to use one antenna flown twice over the same scene; then, if the second flight exactly duplicates the track of the first, an interesting possibility occurs. There would be no phase changes between the images at all unless there was a physical change in the scene, such as ground swelling, that would alter the distance from some resolution element to the antenna. Since the phase changes all occur at the short carrier wavelength, the basic limitation on sensitivity is only the phase noise in the system. When the two imaging passes are made from flight tracks that are separated (which is the case with the Seasat images used here), it is no longer possible to distinguish surface changes from the parallax caused by topography. However, with some additional computation, a third image made at some other baseline may be used to remove the topography and leave only the surface changes. This method was applied using Seasat data to an imaging site in Imperial Valley, California, where motion effects were observed that were ascribed to the expansion of water-absorbing clays. Phase change images of this area are shown, along with associated ground truth about the presence of water. Problems with the technique are explored, along with a discussion of future experimental possibilities on upcoming SAR missions like Earth Observing System (EOS), Earth Resources Satellite (ERS 1), SIR-C, and the Venus imaging radar, Magellan.

Wright T, Parsons B, Fielding E .

Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite Radar interferometry

[J]. Geophysical Research Letters, 2001,28(10):2117-2120.

DOI:10.1029/2000GL012850      URL     [本文引用: 1]

In recent years, interseismic crustal velocities and strains have been determined for a number of tectonically active areas through repeated measurements using the Global Positioning System. The terrain in such areas is often remote and difficult, and the density of GPS measurements relatively sparse. In principle, satellite radar interferometry can be used to make millimetric-precision measurements of surface displacement over large surface areas. In practice, the small crustal deformation signal is dominated over short time intervals by errors due to atmospheric, topographic and orbital effects. Here we show that these effects can be overcome by stacking multiple interferograms, after screening for atmospheric anomalies, effectively creating a new interferogram that covers a longer time interval. In this way, we have isolated a 70 km wide region of crustal deformation across the eastern end of the North Anatolian Fault, Turkey. The distribution of deformation is consistent with slip of 17-32 mm/yr below 5-33 km on the extension of the surface fault at depth. If the GPS determined slip rate of 24卤1 mm/yr is accepted, the locking depth is constrained to 18卤6 km.

Ferretti A, Prati C, Rocca F .

Permanent scatterers in SAR interferometry

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.

DOI:10.1109/36.898661      URL     [本文引用: 1]

Berardino P, Fornaro G, Lanari R , et al.

A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383.

DOI:10.1109/TGRS.2002.803792      URL     [本文引用: 1]

Bara M, Scheiber R, Broquetas A , et al.

Interferometric SAR signal analysis in the presence of squint

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2164-2178.

DOI:10.1109/36.868875      URL     [本文引用: 1]

This paper develops an analysis of the SAR impulse response function from the interferometric point of view, with the intention of studying its phase behavior in the presence of high squint angle values. It will be pointed out that in this case, a phase ramp is present in the range direction, which, in combination with a certain degree of misregistration between the two images induces an offset in the generated interferometric phase. This behavior, if not compensated, imposes strong limits on the performance of the interferometric techniques in a squinted case, especially for airborne SAR systems. The article proposes two new techniques, which are appropriate to correct the phase bias coming from this source. The first one is based on a modification of the azimuth compression filter, which cancels the phase ramp of the range impulse response function for one specific squint value. In case the SAR processing is performed with variable squint over range, the authors propose a second method oriented to estimating the expected misregistration and thus, the phase bias by means of an iterative approach. Simulated data as well as real corner reflector responses are used to show that the correct topography can be recovered precisely even in the presence of phase bias coming from the squinted geometry.

Prats P, Marotti L, Wollstadt S.

Investigation on TOPS interferometry with TerraSAR-X

[C]//2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu:IEEE, 2010.

[本文引用: 1]

Scheiber R, Moreira A .

Coregistration of interferometric SAR images using spectral diversity

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2179-2191.

DOI:10.1109/36.868876      URL     [本文引用: 1]

This article presents a technique for the determination of the relative misregistration between two interferometric SAR images. The proposed technique is based on the spectral properties of the complex SAR signal. Unlike conventional coregistration methods, the proposed technique does not need any interpolation nor cross-correlation procedures and also no coherence or fringe optimization must be performed. Instead, the phase information of different spectral looks is evaluated giving misregistration information on a pixel by pixel basis. The proposed technique is at least as accurate as the conventional algorithms and its implementation is very simple. Airborne repeat-pass interferometric data and simulated ScanSAR data are used to illustrate the operation of the proposed technique.

Ng A H M, Ge L L, Li X J , et al.

Monitoring ground deformation in Beijing,China with persistent scatterer SAR interferometry

[J]. Journal of Geodesy, 2012,86(6):375-392.

DOI:10.1007/s00190-011-0525-4      URL     [本文引用: 1]

AbstractThis paper investigated the long term ground deformation in Beijing, China, using persistent/permanent scatterer interferometry (PSI) techniques. GEOS-PSI (Geodesy and Earth Observing Systems-PSI), an in-house software developed at UNSW for PSI, has been applied to 41 ENVISAT ASAR images acquired over the metropolitan area of Beijing City between June 2003 and March 2009 and 24 ALOS PALSAR images (two Paths: 10 acquisitions from January 2007 to October 2008 and 14 acquisitions from February 2007 to September 2009). The results generated using these datasets from the two satellites were cross-validated. Correlations between the results of ENVISAT ASAR and ALOS PALSAR agreed very well. The horizontal and vertical displacement rate maps over Beijing City were obtained from the results generated with data acquired by both satellites over the period from 1st February 2007 to 1st November 2008. The results indicate that the displacements in Beijing City were mainly in the vertical direction. The majority of the easting displacement rates were in the range of 6110 mm/year to 1002mm/year, while the vertical rates were in the range of 61115 mm/year to 602mm/year. The possible cause for the ground deformation is groundwater extraction based on our research as well as earlier published studies.

闫建伟, 汪云甲, 朱勇 .

基于D-InSAR技术的淮南矿区地面沉陷监测

[J]. 工矿自动化, 2011,37(8):48-51.

URL     [本文引用: 1]

针对常规的通过大地水准测量、GPS测量监测矿区地面沉陷的技术存在监测周期长、成本高、无法全面监测等缺陷,提出了一种基于D-InSAR技术的矿区地面沉陷监测方法。以淮南矿区为试验区,采用两轨法D-InSAR技术,利用该地区2个时相的ALOS PALSAR数据获取了淮南矿区试验时间段内的地面形变图,分析了淮南矿区各矿的地面沉陷信息。结果表明,煤矿开采区存在5~25 cm不同程度的沉陷,与实际情况相符,因此,基于D-InSAR技术的监测方法可以作为一种获取矿区大范围的地表沉陷信息的有效方法。

Yan J W, Wang Y J, Zhu Y .

Monitoring of surface subsidence based on D-InSAR technology in Huainan mining area

[J]. Industry and Mine Automation, 2011,37(8):48-51.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发