Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (4): 200-205    DOI: 10.6046/gtzyyg.2018.04.30
     本期目录 | 过刊浏览 | 高级检索 |
基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降
张晓博1, 赵学胜2, 葛大庆3, 刘斌3, 张玲3, 李曼3, 王艳3
1. 防灾科技学院生态环境学院,廊坊 101601
2. 中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
3. 中国国土资源航空物探遥感中心,北京 100083
Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique
Xiaobo ZHANG1, Xuesheng ZHAO2, Daqing GE3, Bin LIU3, Ling ZHANG3, Man LI3, Yan WANG3
1. School of Ecology and Environment, Institute of Disaster Prevention, Langfang 101601, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing for Land and Resources, Beijing 100083, China
全文: PDF(7268 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于Sentinel-1获取的9景影像,采用新型TOPS成像模式Stacking技术分析淮南矿区地面沉降特征。首先,针对TOPS干涉影像burst间存在相位跳变的问题,采用三步法对影像进行精确配准,配准精度高达0.001个像元; 然后,利用多项式拟合方法消除差分干涉图中的趋势性相位; 最后,基于最小二乘法线性回归得到研究区的沉降速率。沉降结果表明,淮南矿区呈现多个沉降中心,主要分布于研究区的西部和北部,沉降速率在空间上呈不均一分布,最大年沉降速率在80~90 cm/a; 研究区开采沉陷具有幅度大、范围小的特点,沉降幅度在10~80 cm/a间变化,沉降面积占整个研究区面积的3.13%; 矿井地面沉降非线性特征明显,即沉降中心在不同时间段的形变量不同。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓博
赵学胜
葛大庆
刘斌
张玲
李曼
王艳
关键词 Sentinel-1TOPS模式Stacking技术淮南矿区地面沉降    
Abstract

This paper presents the subsidence results of the Huainan coal mine from Sentinel-1 TOPS images during the period between November 3, 2015 and March 14, 2016 using Stacking technique. The high accuracy coregistration comprising three steps was firstly used to get differential interferograms without phase jump. Then the trend phase was removed by polynomial fitting, and the subsidence rate was retrieved based on the least squares linear regression method. The subsidence velocity map shows that there are several subsidence centers mainly distributed in the west and the north of the research region. The maximum subsidence rate is 80~90 cm/a, and the subsidence is inhomogeneous spatially. The mining subsidence of the study area has the characteristics of high gradients varying from 10 to 80 cm/a, with small subsidence coverage for only 3.13% of the total area. From the differential interferograms the authors found that the deformation magnitude is variable in different observation spans, which implies the nonlinear characteristics of the mine.

Key wordsSentinel-1    TOPS mode    Stacking technique    Huainan coal mine    ground subsidence
收稿日期: 2017-04-17      出版日期: 2018-12-07
:  P642  
基金资助:国家自然科学基金项目“基于改进的高分辨率时序InSAR技术研究Khash Mw7.7地震震后形变机制”资助(41504048)
作者简介: 张晓博(1989-),女,讲师,主要从事InSAR技术和地表形变监测研究。Email: xiaobozhang1989@hotmail.com
引用本文:   
张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
Xiaobo ZHANG, Xuesheng ZHAO, Daqing GE, Bin LIU, Ling ZHANG, Man LI, Yan WANG. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.04.30      或      https://www.gtzyyg.com/CN/Y2018/V30/I4/200
Fig.1  数据处理流程
Fig.2  Burst相位跳变消除前后的差分干涉图
Fig.3  研究区沉降速率
Fig.4  研究区沉降面积统计
Fig.5  不同时间段淮南矿东北区域地表形变差分干涉图
[1] Nestbitt A. Subsidence monitoring West Cliff Colliery longwall 5A4[C]// Association of Public Authority Surveyors.Wollongong:APAS, 2003: 133-139.
[2] 李楠, 王磊 . 基于D-InSAR技术的老采空区稳定性监测研究[J]. 矿山测量, 2016,44(3):1-4.
doi: 10.3969/j.issn.1001-358X.2016.03.001
Li N, Wang L . Research of coal mining subsidence monitoring based on D-InSAR technology[J]. Mine Surveying, 2016,44(3):1-4.
[3] 张飞 . 基于DInSAR技术的淮南采煤沉陷区地面沉降监测研究[D]. 南京:南京大学, 2012.
Zhang F . Study on DInSAR Technology of Monitoring Land Subsidence in Huainan Mining Area[D]. Nanjing:Nanjing University, 2012.
[4] 刘文倩 . InSAR测量技术在淮南矿区地面沉降监测中的应用[D]. 合肥:合肥工业大学, 2012.
Liu W Q . An Application of InSAR Technology in Ground Subsidence Monitoring in Huainan Coal-mining Area[D]. Hefei:Hefei University of Technology, 2012.
[5] Biggs J, Wright T, Lu Z , et al. Multi-interferogram method for measuring interseismic deformation:Denali Fault, Alaska[J]. Geophysical Journal International, 2007,170(3):1165-1179.
doi: 10.1111/j.1365-246X.2007.03415.x
[6] Zhao Q, Lin H, Jiang L M. Ground deformation monitoring in Pearl River Delta region with Stacking D-InSAR technique[C]// Proceedings of SPIE,Geoinformatics 2008 and Joint Conference on GIS and Built Environment:Monitoring and Assessment of Natural Resources and Environments. 2008,714513:1-9.
[7] Geudtner D, Torres R, Snoeij P, et al. Sentinel-1 system[C]// 2014 10th European Conference on Synthetic Aperture Radar (EUSAR).Berlin:VDE, 2014: 1-3.
[8] Berger M, Moreno J, Johannessen J A , et al. ESA’s sentinel missions in support of earth system science[J]. Remote Sensing of Environment, 2012,120:84-90.
doi: 10.1016/j.rse.2011.07.023
[9] Zan F D, Guarnieri A M M. TOPSAR:Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(9):2352-2360.
doi: 10.1109/TGRS.2006.873853
[10] Gabriel A K, Goldstein R M, Zebker H A . Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989,94(B7):9183-9191.
doi: 10.1029/JB094iB07p09183
[11] Wright T, Parsons B, Fielding E . Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite Radar interferometry[J]. Geophysical Research Letters, 2001,28(10):2117-2120.
doi: 10.1029/2000GL012850
[12] Ferretti A, Prati C, Rocca F . Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661
[13] Berardino P, Fornaro G, Lanari R , et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[14] Bara M, Scheiber R, Broquetas A , et al. Interferometric SAR signal analysis in the presence of squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2164-2178.
doi: 10.1109/36.868875
[15] Prats P, Marotti L, Wollstadt S. Investigation on TOPS interferometry with TerraSAR-X [C]//2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu:IEEE, 2010.
[16] Scheiber R, Moreira A . Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2179-2191.
doi: 10.1109/36.868876
[17] Ng A H M, Ge L L, Li X J , et al. Monitoring ground deformation in Beijing,China with persistent scatterer SAR interferometry[J]. Journal of Geodesy, 2012,86(6):375-392.
doi: 10.1007/s00190-011-0525-4
[18] 闫建伟, 汪云甲, 朱勇 . 基于D-InSAR技术的淮南矿区地面沉陷监测[J]. 工矿自动化, 2011,37(8):48-51.
Yan J W, Wang Y J, Zhu Y . Monitoring of surface subsidence based on D-InSAR technology in Huainan mining area[J]. Industry and Mine Automation, 2011,37(8):48-51.
[1] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[2] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[3] 李渊, 毋琳, 戚雯雯, 郭拯危, 李宁. 基于改进OGMRF-RC模型的SAR图像分类方法[J]. 自然资源遥感, 2021, 33(4): 98-104.
[4] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[5] 张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
[6] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[7] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[8] 汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3): 143-148.
[9] 刘警鉴, 李洪忠, 华璀, 孙毓蔓, 陈劲松, 韩宇. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1): 191-199.
[10] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[11] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[12] 张晓婧, 陈蓓蓓, 雷坤超, 陈文锋, 高明亮, 周超凡, 段光耀. 京津高铁沿线地面沉降特征(北京段)[J]. 国土资源遥感, 2019, 31(1): 171-179.
[13] 范景辉, 王如意, 赵红丽, 李雁明, 林昊, 燕云鹏. 地面沉降光栅立体图研究制作[J]. 国土资源遥感, 2018, 30(4): 102-107.
[14] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
[15] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发