顾及时点特征的水体提取成果空间修正方法
国家基础地理信息中心,北京 100830
Research on the geospatial correction method of water extracting products considering the characteristics of time points
National Geomatics Center of China, Beijing 100830, China
责任编辑: 陈理
收稿日期: 2018-05-3 修回日期: 2018-05-31 网络出版日期: 2019-06-15
基金资助: |
|
Received: 2018-05-3 Revised: 2018-05-31 Online: 2019-06-15
作者简介 About authors
程滔(1981-),男,硕士,高级工程师,主要从事地理国情监测技术研究、地表覆盖信息提取与变化监测方法研究、摄影测量与遥感影像数据处理与应用开发等工作。Email:chengtao@nsdi.gov.cn。 。
水体提取具有时点效应的特点,针对陆地水体季节性变化明显的客观现状,提出一种水体成果地理空间修正方法。利用高时间分辨率遥感影像开展水体信息提取,保证水体现势性满足标准时点要求; 然后,将此结果作为先验知识,基于精细格网数字高程模型(digital elevation model,DEM)数据,利用水体种子点区域生长,提取精细化的水体结果,即将成果优化至高空间分辨率水平,保证水体成果满足精度要求,从而实现水体成果的地理空间修正。以第一次全国地理国情普查地表覆盖水体成果为研究实例,获取了研究区满足标准时点要求的15 m空间分辨率的Landsat8影像,基于归一化差异水体指数(normalized difference water index,NDWI)提取水体分布状况,采用2 m格网DEM数据实现了精度优化。结果显示,研究区水体成果地理空间范围相对于影像源时相修正了17.97%,空间分辨率转换带来的水体成果地理空间范围优化率为1.51%。研究表明该方法能够在影像接边各方时相不满足标准时点要求的情况下,为基于遥感技术的水体信息提取提供一种顾及时点特征的成果地理空间修正方法,具有一定的实际应用价值。
关键词:
The water extracting has the characteristics of time point effects. In view of the objective status of seasonal variation of land water, a method of geospatial correction for water extracting products is proposed. Firstly, the water land cover information is extracted based on high time resolution remote sensing image to ensure that the timeliness meets the standard time point. Then the result is used as a prior knowledge, and the refined water land cover information is extracted based on fine grid DEM data by using region growing algorithm of water seeds, whose accuracy is optimized to the high spatial resolution level and can meet the requirement. On such a basis, it achieves geospatial correction of water extracting products. With the first national geographic conditions census as an example, the Landsat 8 images of 15 m spatial resolution were obtained to meet the standard time point of the study area. The water land cover distribution was extracted based on the NDWI index, and the 2 m grid DEM data were used to optimize the precision. The results show that the geographical spatial range of the study area was corrected by 17.97% compared with the image source’s scanning time, and geographical spatial range was optimized by 1.56% caused by the spatial resolution conversion. The research shows that this method can provide a reference for the geospatial correction in the water extraction based on remote sensing technology, and has certain practical application value in the case that the images do not meet the requirements of the standard time point.
Keywords:
本文引用格式
程滔, 李广泳, 毕凯.
CHENG Tao, LI Guangyong, BI Kai.
0 引言
在全国范围进行水体信息提取,需要反映某一时间节点的水体状态,以便掌握水体信息在这一时间节点的数量、分布和利用现状等情况,也利于基于多次调查,分析全国范围水体信息的动态变化特征和规律,为水体综合评价与优化配置提供决策数据支撑。因此,在全国范围开展水体信息提取,标准时点统一是必然要求。目前,遥感和地理信息系统等技术和手段是水体信息提取的主要方法,高空间分辨率遥感卫星的不断增多,为精细化的水体信息提取提供了丰富的遥感影像数据源。随着遥感、地理信息系统和互联网等技术的快速发展,水体信息提取对成果的空间精度和准确性要求也不断提升[1]。例如,第二次全国土地调查以2009年12月31日为调查标准时点,所使用的遥感影像空间分辨率为一类区优于1 m、二类区优于2.5 m、三类区和四类区优于5 m[2]。第三次全国土地调查以2019年12月31日为调查标准时点,所使用的遥感影像中: 农村土地调查全面采用优于1 m空间分辨率的航天遥感数据、城镇土地利用现状调查采用优于0.2 m空间分辨率的航空遥感数据[3]。第一次全国水利普查以2011年12月31日为普查标准时点,所使用的遥感影像根据普查任务和内容的不同有所区分,主要包括2.5 m和20 m等多种空间分辨率影像[4]。第一次全国地理国情普查(以下简称“地理国情普查”)以2015年6月30日为普查标准时点,并且在持续的年度地理国情监测中,均以6月30日为标准时点,所使用的遥感影像空间分辨率为全国优于2.5 m以及重点区域优于1 m[5]。
然而,我国地域广阔,气象条件差异性明显,在全国范围获取一遍满足标准时点要求的、统一时相的、质量可行的高空间分辨率遥感影像比较困难,这给整体时点统一要求带来了不确定性因素。对于水体信息提取而言,基于多种时相遥感影像采集水体信息,会导致部分区域影像接边处水体覆盖范围不一致,统计得到的全国水体面积数据存在一定误差。目前,较好的解决方法是先基于已获取遥感影像提取各项信息,待获取到标准时点遥感影像后,对前期调查成果进行更新,将其统一到标准时点上; 或结合外业调查的方法进行更新。但高空间分辨率的标准时点遥感影像的可获取性也存在不确定性,外业调查方法投入的人力、物力较大。相比之下,空间分辨率相对较低、时间分辨率相对较高的遥感影像比较容易获取。
因此,针对地表覆盖水体接边区域遥感影像时相不满足标准时点要求的情况,在原始成果基础上,收集获取空间分辨率相对较低、时间分辨率较高的遥感影像,开展水体信息提取; 同时,基于精细格网数字高程模型(digital elevation model,DEM)数据,利用区域生长算法,获取精细化的水体成果,对原始成果进行地理空间修正,从而保证水体提取成果既满足标准时点要求,又满足精度要求; 并以地理国情普查地表覆盖水体成果为研究实例,开展方法应用与效果验证。
1 研究方法
1.1 水体信息提取方法
水体信息提取的关键在于水体特征分析与挖掘,以及水体特征规则构建,在大部分遥感影像上,水体的纹理一般比较均匀、平滑,与周边地表覆盖物光谱差异较大。在基于遥感影像的地表覆盖信息提取中,归一化差异水体指数(normalized difference water index,NDWI)是水体信息自动提取的算法之一[6]。该算法是通过寻找水体的最强和最弱反射波段,从而增强水体对象,抑制背景地物,实现水体信息提取的目的。
据研究,水体在绿光和近红外波段上,分别表现出了强反射和强吸收特征,故NDWI公式为
式中
NDWI算法在基于中、低空间分辨率遥感影像的水体信息提取中具有非常好的适用性。此外,水体在蓝光波段上表现出较强反射特性。因此,可将蓝光波段的比率值和标准方差值作为水体信息提取的其他主要判定规则[7]。
根据处理单元的粒度,水体信息提取方法可分为基于像元光谱统计的自动分类方法和面向对象语义信息的自动分类方法。前者适用于中、低空间分辨率遥感影像; 后者适用于高空间分辨率遥感影像。
1.2 区域生长算法
本研究在确定生长准则时,通过水体结果与DEM数据空间叠置分析,依据水体图斑内各格网DEM各项统计值确定,通过设置阈值范围,确定相邻像素是否被包括进来,基本准则为
式中:
图1
图1
地表覆盖水体优化计算软件主界面
Fig.1
Main interface of water land cover product’s optimization calculating software
该软件的研发提高了数据处理的自动化水平和成果质量,实现了将水体成果优化至高空间分辨率水平的目的,满足了研究中数据处理工作对软件工具的需求。
2 研究区概况及数据源
以地理国情普查地表覆盖水体成果为研究实例,选取了长江流域的局部区域作为研究区。该研究区位于省级行政区划交界处,面积为37.26 km2。影像接边两侧均为WorldView-2影像,空间分辨率为0.5 m; 东北部影像时相为2014年1月4日,其余部分影像时相为2013年1月19日,两者距离地理国情普查标准时点均较远; 不符合地理国情普查标准时点要求。使得图2(a)黄色矩形框范围,即影像接边处水体范围变化明显。经统计,研究区地理国情普查地表覆盖水体成果总面积为11.91 km2,范围如图2(a)红线所示。另外,研究区属于山地、高山地地形,高程范围为417.901 311.63 m。从图2(b)的三维视图可以看出,研究区沿河流方向呈四周地势高、中间地势低的特点。DEM数据来源于地理国情普查精细化生产[12],格网单元尺寸为2 m,等高距为5 m,是基于1∶1万数字线划图(digital line graphic,DLG)数据线性内插生成,高程中误差为1.5 m,数据源现势性为2012年12月。
图2
图3
经数据配准、对比分析发现,2幅影像水体分布范围吻合度极好,因此,研究中采用2014年1月17日影像代替2015年6月29日影像开展研究。
3 结果与分析
3.1 基于Landsat8遥感影像数据的水体信息提取
基于2014年1月17日Landsat8遥感影像数据计算得到NDWI指数数据(图4),反演得到水体提取结果。
图4
将水体提取结果分别于2幅Landsat8遥感影像数据叠合(图5),发现2幅影像水体分布范围吻合度极好,也进一步证明了采用2014年1月17日影像代替2015年6月29日影像开展研究的可行性。
图5
图5
基于Landsat8遥感影像数据提取的水体分布范围
Fig.5
Water land cover result extracted by Landsat8 image
3.2 基于2 m格网DEM数据的水体成果精度优化
由于研究区属于山地、高山地地形,高程落差较大。因此,考虑水体落差因素,研究中将最大图斑进行分段处理,共计分为13段,提取出各段几何中心点13个,作为待定种子点。
通过与DEM空间叠置分析,提取出各段几何中心点的高程值,同时,统计出各段高程最小值、最大值、平均值、值域范围和标准差等统计值。
通过对各段几何中心点的高程值与各项统计值进行对比分析,对5个待定种子点的空间位置进行了修正,最终确定的种子点空间分布范围如图6所示。
图6
采用8邻域算子,通过图形区域生长,对水体种子点进行迭代生长计算,
图7
图7
基于精细格网DEM的水体区域生长结果
Fig.7
Result of water seeds’ region growing based on detailed DEM
3.3 结果对比分析
地理国情普查水体成果、基于Landsat8遥感影像数据提取的水体结果和区域生长结果数据对比显示如图8所示。
图8
图8
地理国情普查水体成果、基于Landsat8遥感影像数据提取的水体结果和区域生长结果数据对比
Fig.8
Comparison of the water results between region growing,extracted by Landsat8 and collected in national geographic conditions census
从图8可以看出,研究区区域生长结果与基于Landsat8遥感影像数据提取的水体结果图斑吻合度较高,两者与地理国情普查水体成果之间都存在一定差异,通过水体优化处理,原始成果得到了修正。
对研究区水体成果优化的各项指标进行统计,结果如表1所示。
表1 水体成果修正各项指标统计结果
Tab.1
指标 | 符号及公式 | 指标数值 |
---|---|---|
地理国情普查结果水体面积/km2 | S1 | 11.91 |
基于Landsat 8提取结果水体面积/km2 | S2 | 9.92 |
区域生长结果水体面积/km2 | S3 | 9.77 |
修正量/km2 | S3-S1 | -2.14 |
精度优化面积/km2 | S3-S2 | -0.15 |
修正比例/% | (S3-S1)/S1 | 17.97 |
精度优化率/% | (S3-S2)/S2 | 1.51 |
从表1可以得出,研究区水体成果空间范围相对于标准时点监测修正了17.97%,通过2 m格网DEM数据对基于15 m空间分辨率Landsat8遥感影像数据提取的水体结果进行精度优化,研究区水体成果空间范围优化了1.51%。通过该方法,实现了水体成果空间范围修正。
4 结论
1)采用较高时间分辨率遥感影像与精细格网DEM数据协同的方式,开展水体提取成果空间修正,能够对大范围的标准时点高空间分辨率遥感影像覆盖形成较好的影像补充,该方法保证了水体提取成果的现势性满足标准时点要求; 同时,精细格网DEM的应用,能够使得基于低空间分辨率遥感影像采集的信息精度保持在较高的水平。从而在大尺度上形成最接近标准时点状态的调查成果,缩小了由于影像数据源的差异造成的调查成果误差,使统计结果更加客观、合理。
2)通过选取地理国情普查地表覆盖水体成果开展方法应用与效果验证,验证了该方法的适用性; 地表覆盖水体优化计算软件的研发,提高了数据处理的自动化水平和成果质量,满足了数据处理工作的需要,提出的方法能够在水体提取成果优化中推广应用。
参考文献
第二次全国土地调查标准时点统一更新调查实施方案
[EB/OL].(
Implementation scheme of standard time point unified updating of China’s second land survey
[EB/OL]. (
第三次全国土地调查总体方案
[EB/OL]. (
Overall plan of China’s third land survey
[EB/OL]. (
第一次全国水利普查公报
[EB/OL].(
Bulletin of first national census for water
.[EB/OL].(
利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究
[J].
DOI:10.3321/j.issn:1007-4619.2005.05.012
URL
Magsci
[本文引用: 1]
在对M cfeeters提出的归一化差异水体指数(NDWI)分析的基础上,对构成该指数的波长组合进行了修改,提出了改进的归一化差异水体指数MNDWI(M odified NDWI),并分别将该指数在含不同水体类型的遥感影像进行了实验,大部分获得了比NDWI好的效果,特别是提取城镇范围内的水体。NDWI指数影像因往往混有城镇建筑用地信息而使得提取的水体范围和面积有所扩大。实验还发现MNDWI比NDWI更能够揭示水体微细特征,如悬浮沉积物的分布、水质的变化。另外,MNDWI可以很容易地区分阴影和水体,解决了水体提取中难于消除阴影的难题。
A study on information extraction of water body with the modified normalized difference water index(MNDWI)
[J].
基于高分辨率遥感影像的地理国情普查水体信息提取方法
[J].
Water information extraction method in geographic national conditions investigation based on high resolution remote sensing images
[J].
基于纹理特征与区域生长的高分辨率遥感影像分割算法
[J].
Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image
[J].
参考1维光谱差异的区域生长种子点选取方法
[J].
Seed extraction method for seeded region growing based on one-dimensional spectral differences
[J].
GDPJ 08—2013多尺度数字高程模型生产技术规定
[EB/OL].(
GDPJ 08—2013 production’s technology regulations of multiscale digital elevation model
[EB/OL].(
/
〈 |
|
〉 |
