国土资源遥感, 2020, 32(3): 114-120 doi: 10.6046/gtzyyg.2020.03.15

技术应用

基于多源SAR数据唐山城区活动断裂微小差异形变探测

张玲,, 刘斌, 葛大庆, 郭小方

中国自然资源航空物探遥感中心,北京 100083

Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data

ZHANG Ling,, LIU Bin, GE Daqing, GUO Xiaofang

China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

责任编辑: 李瑜

收稿日期: 2019-07-26   修回日期: 2019-10-24   网络出版日期: 2020-09-15

基金资助: 中国地质调查局项目“京津冀地区地面沉降地裂缝调查及地质环境监测”.  DD20160237
“全国地面沉降遥感地质调查与监测”.  DD20190513

Received: 2019-07-26   Revised: 2019-10-24   Online: 2020-09-15

作者简介 About authors

张玲(1982-),女,硕士,高级工程师。主要从事InSAR地表形变监测理论与应用研究。 Email: zling127@qq.com

.

摘要

活动断裂活动特征存在明显的时空分异性,需要长期有效地进行监测。合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术是近些年来地表形变调查监测的主要技术手段之一,具有覆盖范围广、信息获取效率高、成本低等优势。以InSAR技术为手段,采用相干目标点长时间序列分析方法,利用RADARSAT-2卫星Wide模式30 m空间分辨率和TerraSAR-X卫星Strip模式3 m空间分辨率这2种雷达数据,开展了唐山市城区主要活动断裂两侧微小差异性形变探测的应用研究。结果显示,城区内唐山—古冶断裂较为明显,最大的差异量在2 mm/a。以RADARSAT-2卫星C波段中等分辨率雷达数据为数据源的形变结果可以清晰地呈现出活动断裂两侧差异性形变; 而TerraSAR-X卫星X波段数据雷达波长较短,受地表覆被变化影响较大,且活动断裂的变化相对于该量值较小,较难从地表形变中分离出断裂两侧的差异性形变。

关键词: InSAR ; 活动断裂 ; 差异性形变 ; 微小形变

Abstract

The active faults deformation, with distinct temporal and spatial variations, requires long-term and effective monitoring. InSAR (interferometry synthetic aperture Radar), with the advantages of high efficiency, wide coverage and low cost, is one of the main technical means for ground surface deformation survey in recent years. In this paper, the small differential deformation of the main active faults in Tangshan urban area was monitored by the interferometric point target analysis. Two kinds of radar data were used: the Wide strip mode of RADARSAT-2 C-band with 30m spatial resolution and the Strip mode of TerraSAR-X X-band with 3 m spatial resolution. The results show that the differential deformation of Tangshan-Guye active fault is obvious with the maximum differential velocity of 2 mm/a. In this case, the deformation results from RADARSAT-2 C-band medium resolution data can clearly show the tiny differential deformation between the two sides of the active faults. However, TerraSAR-X X-band data, with shorter wavelength, is more obviously affected by the change of surface cover. Compared with this deformation, the vertical differential deformation between the two sides of active faults is too small to be separated from the TerraSAR results.

Keywords: InSAR ; active fault ; differential deformation ; tiny surface deformation

PDF (4024KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张玲, 刘斌, 葛大庆, 郭小方. 基于多源SAR数据唐山城区活动断裂微小差异形变探测. 国土资源遥感[J], 2020, 32(3): 114-120 doi:10.6046/gtzyyg.2020.03.15

ZHANG Ling, LIU Bin, GE Daqing, GUO Xiaofang. Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data. REMOTE SENSING FOR LAND & RESOURCES[J], 2020, 32(3): 114-120 doi:10.6046/gtzyyg.2020.03.15

0 引言

合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术是近20 a间快速发展起来的一门空间几何形态测量遥感技术,已成功应用于全球数字高程模型(digital elevation model,DEM)获取和各类地表形变场的监测工作,包括地震位移、地面沉降、山体滑坡、冰川移动和工程形变等。活动断裂的空间活动性在重大工程选址、城市规划和地震安全性评价等工作中有重要意义,常采用跨断层监测网、线开展三维向量(垂直、张压和错动)变化监测,为断层活动性分析提供精确资料。

相对于广泛应用InSAR开展监测工作的其他形变,活动断裂本身变化非常小,大陆内部断层的滑动速率以2~5 mm/a最为典型[1]。开展活动断裂InSAR监测的研究较少,但在已有研究中均体现了InSAR空间采样密度高、空间连续性好、覆盖面积大的优势[2,3],且已有研究的试验区主要分布在受人为活动较少的地区。活动断裂活动表现为水平(张压)方向、水平(走滑)方向和垂直(升降)方向。唐山断裂近些年来整体在水平方向呈现微弱的右旋张性活动,垂直方向呈正断层活动,不同时段的运动状况有所不同[4]。目前,InSAR技术在覆盖范围上可以实现数百km的连续覆盖,监测精度为mm级,视线向监测灵敏度优于1~2 mm。在满足相干性要求的条件下,采用InSAR技术可以探测到断裂两侧垂向相对活动性较大的差异性形变。

本研究利用RADARSAT-2卫星和TerraSAR-X卫星2种雷达数据分别开展InSAR处理,以相干目标为监测对象,构建监测网络,实现这些目标干涉相位的时间序列分析,获取了唐山市区域性地表形变结果,通过活动断裂两侧相干点目标的形变分析,呈现了穿越唐山市区的主要活动断裂两盘差异性活动特征。进一步证明InSAR技术可以作为一项活动断裂垂直向形变监测的手段,与传统断层监测手段相结合,发挥InSAR技术面上覆盖广、台站单点测量精度高的优势,实现对活动断层更全面的监测,为城市规划建设、地壳运动研究等工作提供更为全面的测量数据。

1 InSAR相干目标时序分析

InSAR技术的核心是利用雷达数据的干涉相位获取目标的几何特征及变化信息。2幅影像干涉纹图的相位 φint包含: ①地形相位 φtop; ②平地相位 φflat; ③2幅影像间隔时间内地形雷达视线向(line of sight,LOS)变化引起的相位 φdef; ④大气波动带来的延迟相位差 δφatm; ⑤2幅影像噪声相位差 δφn。由此干涉相位可以表示为:

φint=φtop+φflat+φdef+δφatm+δφn,

式中: φtop是由地形的高程带来的干涉相位,可以通过外部DEM计算; φflat由成像几何关系推算。经过差分干涉处理,即去除 φtopφflat后得到差分相位 φdiff,可以表示为:

φdiff=φdef+φtopoerror+δφatm+δφn,

式中 φtopoerror为高程误差引起的相位。

干涉处理过程中受卫星轨道、地形误差、大气和噪声等的影响,2期雷达数据的差分干涉测量精度往往达不到预期,不能满足生产需要。而永久散射体方法[5](permanent scatterer InSAR,PSInSAR)和相干目标时间序列分析[6]等方法,是将获取的多期(往往大于20期)图像内质量可靠的相干点目标进行时间序列的回归分析,以提取相干点目标高精度形变信息。意大利TRE公司曾利用丰富的测量数据统计出了InSAR各类测量值的测量精度,即1个标准差(σ) [7],如表1所示,其中典型测量值精度仅以PS点距离参考点小于4 km,C波段数据为例。本研究将相干目标时序分析与小基线集技术(small baseline subsets,SBAS)方法[8]相结合,将满足时空基线要求的图像对两两干涉,通过对相干目标干涉相位的时间序列回归分析,获取地面沉降信息。总体处理流程如图1所示。相干目标时间序列分析方法以差分干涉图上相干特性保持良好的相干目标为研究对象,避免了相干性降低造成的相位误差在解算过程中的传播。基于大量的合成孔径雷达(synthetic aperture Radar,SAR)数据(20~30景,甚至更多),从中筛选出具有稳定散射特性的点目标: 一是散射强度稳定,统计强度离散性方差; 二是将单视复数据(single look complex,SLC)图像作反变换,生成若干个子视图,对子视图作谱相关分析,将满足离散方差或谱相关要求的像元作为待分析的相干目标。

表1   InSAR典型测量值精度[7]

Tab.1  Typical values of precision

测量值精度(1σ)
平均形变速率(LOS)/(mm·a-1)1
单次差分测量(LOS)/mm5
东向/m6
北向/m3
高程/m1.5

新窗口打开| 下载CSV


图1

图1   处理基本流程

Fig.1   Data processing chart


则第 i幅差分干涉图相邻2相干目标xy的相位差可以表示为:

δφi(x,y)=δφdefi(x,y)+δφtopoerrori(x,y)+δφresi(x,y)=4πλ·δv·Ti+4πλ·Birsinθ·δh+δφresi(x,y)+δφnonlineari(x,y),

式中: λ为雷达波长; δv为2点线性形变速率; Tii幅差分干涉图的时间间隔; Bi为第 i幅差分像对的空间垂直基线; r为传感器到目标的距离; θ为雷达波入射角; δh为DEM高程误差; δφresi(x,y)为大气和噪声残余相位; δφnonlineari(x,y)为非线性形变相位。式(3)时间分析模型中将 δvδh设为待求参数,将 δφresi(x,y)δφnonlineari(x,y)设为随机误差,通过构建离散点观测网络,利用Delaunay三角剖分使得所有相邻相干目标互相关联,基于三角网之间的相互联系展开相位迭代处理,经过迭代处理得到每个“弧段”上的相对速率、高程改正和残余误差等。对满足阈值条件的弧段进行积分,得到绝对变化量,即每个相干目标的形变速率和高程误差。

利用相干目标时序分析方法获取雷达图幅内地表形变状况,作为活动断裂两侧差异性形变分析的基础,对与活动断裂近似正交的剖面线进行分析,从而获取活动断裂两侧形变的微小差异。

2 研究区概况及数据源

2.1 研究区概况

唐山市区内存在多条活动断裂,NNE及NEE向断裂与NW向及近E-W断裂相交汇切割成块体,城区内主体断裂为NE向的唐山断裂带,是1978年唐山地震发震带[9,10]。它是一条由多支相互平行的断裂与褶皱相伴生的复杂断裂带,自西向东有陡河断裂、唐山—巍山—长山南坡断裂和唐山—古冶断裂。它发育在开平向斜陡倾以致倒转的西北翼上,展布于平原区内,为隐伏断裂[9]。其中唐山—古冶断裂在晚第四纪活动性强,构成唐山断裂带中规模最大的一条断裂,1976年唐山地震发震层位于该断裂南段,震后北段断层附近有地表裂缝出现。本文以其中3条近似平行穿越唐山市主城区的NNE向断裂为主要分析对象。

2.2 数据源

本文选用了2012年12月—2016年10月间的35期RADARSAT-2卫星数据和2012年12月—2013年12月间的11期TerraSAR-X卫星Strip模式2种类型的雷达数据。数据如表2表3所示。

表2   RADARSAT-2数据列表

Tab.2  Data list of RADARSAT-2

编号日期编号日期编号日期编号日期
12012/11/18102013/11/13192014/12/02282016/03/26
22013/01/05112013/12/07202014/12/26292016/04/19
32013/01/29122014/02/17212015/02/12302016/05/13
42013/04/11132014/04/06222015/04/01312016/06/06
52013/05/05142014/04/30232015/05/19322016/06/30
62013/06/22152014/08/04242015/07/30332016/08/17
72013/08/09162014/08/28252015/08/23342016/09/10
82013/09/02172014/09/21262015/10/10352016/10/28
92013/09/26182014/11/08272016/02/07

新窗口打开| 下载CSV


表3   TerraSAR-X数据列表

Tab.3  Data list of TerraSAR-X

编号日期编号日期编号日期编号日期
12012/12/0642013/04/2872013/09/29102013/12/04
22013/02/1052013/06/1182013/10/21112013/12/26
32013/03/1562013/08/2792013/11/12

新窗口打开| 下载CSV


RADARSAT-2数据为Wide成像模式,C波段,波长5.6 cm; TerraSAR-X数据为Strip成像模式,X波段,波长3.2 cm。采用SRTM DEM为辅助高程数据,空间分辨率30 m。采用多主影像相干目标分析方法,干涉像对空间基线小于300 m,时间间隔为360 d,图2为干涉图像对时空基线分布情况。

图2

图2   干涉图像对组合时空基线

Fig.2   Baseline graph of interferometric images combination


3 InSAR区域形变分析

基于上述2类雷达数据,均采用空间基线300 m,时间基线360 d进行干涉图像对组合,利用SRTM 30 m空间分辨率DEM作为高程信息,分别生成RADARSAT-2和TerraSAR-X差分干涉图集; 通过散射强度和谱相关选择相干目标,开展相干目标的差分相位时序列分析,2种数据采用了相同的图像对选择参数和处理方法,获取了完整覆盖唐山市主城区的地面沉降信息; 通过相干目标时序分析时间基线的控制,分别得到了各年度地面沉降速率。图3为利用RADARSAT-2和TerraSAR-X这2种雷达数据获取的2013年地面沉降速率信息。图3显示了2013年唐山市主城区地面沉降总体沉降状况与唐山市主城区内活动断裂的分布状况。InSAR形变测量对垂向最为敏感,该处描述的InSAR形变信息即为垂向形变,以雷达强度为底图信息,图中采用相干目标点的颜色表现地面沉降的严重程度,负值表示远离雷达视线方向,转为垂向形变后对应地面沉降。对于唐山市而言,主要地表形变为煤矿塌陷,城区大部分地区基本稳定年沉降速率小于15 mm/a。但受唐山矿和马家沟矿的影响,矿区及周边地区存在严重的地面沉降现象,特别是唐山矿所在的南湖地区,形变中心地面塌陷一直持续,塌陷中心形成的水域失相干严重。由图3可以看出,矿区失相干区无法选取有效的相干点目标,但在矿区形变范围外围地面沉降最大速率达到60 mm/a以上。市区内唐山矿和马家沟矿开采造成的沉降影响范围位于陡河断裂与唐山—古冶断裂之间。活动断裂两侧的差异性形变较矿区开采带来的形变量可以忽略不计,在平面图上无明显现象。

图3

图3   2013年唐山市主城区地面沉降速率

Fig.3   Subsidence velocity map of Tangshan urban area in 2013


4 微小差异形变差异分析

由于市区南部唐山矿和北部马家沟矿造成了大范围的地面沉降与塌陷,为尽可能地避免2个矿区开采带来的地面沉降影响(如图3紫色框所示位置),并保证有较充足的相干目标条件下建立了剖面线及其缓冲区,长度19.8 km,缓冲区宽度200 m。对TerraSAR-X Strip模式3 m空间分辨率雷达数据和RADARSAT-2 wide模式30 m雷达数据获取的形变信息分别开展了近似垂直于断裂的剖面分析。通常在其他地表形变调查中多采用剖面线直接分析,故RADARSAT-2数据直接利用剖面线进行分析; 但是由于在本次数据处理过程中发现单一的剖面线差异表现不突出,且TerraSAR-X数据剖面没有差异性趋势,进而对其采用剖面线缓冲区内相干点目标集的方法进行分析。

通过比较分析2013年度2种数据2种不同方法的剖面数据,结果表明RADARSAT-2中缓冲区内相干点目标集的分析较明显呈现出活动断裂两侧差异性形变。图4为基于2013年获取的地面沉降速率信息开展的2种数据剖面分析比较,垂直于横坐标的3条红色竖线分别代表自西向东排列的陡河断裂、巍山—长山南坡断裂和唐山—古冶断裂的3条断裂的位置。

图4

图4   2013年不同剖面分析数据比较

Fig.4   Comparison of different profile data in 2013


在缓冲区内点目标集分析中,横坐标为点目标在剖面线的垂足距剖面线起始点的距离,纵坐标为各点目标的形变速率,负数代表点目标为沉降,通过点集数据的快速傅立叶变换(fast Fourier transform,FFT)滤波,得到缓冲区内相干点目标集在距离向的趋势线(图4(a)和(b)中红色曲线),在图4(a)中,RADARSAT-2数据的相干点目标集趋势线较好地呈现出活动断裂两侧形变的微小差异。剖面线分析中,将整个地区相干点沉降信息插值为面,再提取剖面线上的形变信息。

通过图4比较可以看出,利用RADARSAT-2 卫星wide雷达数据获取的地面沉降信息能够反映出断裂两侧的差异性形变,缓冲区内相干点目标集的分析比直接获取的剖面线趋势更加明显,故推测可能因为RADARSAT-2 卫星雷达数据为C波段中等空间分辨率数据更能代表一定区域内地表的综合形变,而TerraSAR-X卫星X波段数据雷达波长较短,受地表覆被变化影响较大,而活动断裂形变过小,剖面差异形变不明显。此外,缓冲区内相干点目标集的分析也比直接获取的剖面线趋势更加明显。

因此,选择RADARSAT-2 卫星wide雷达数据提取的缓冲区相干点目标集来分析2013—2016年4个年度活动断裂两侧的微小差异形变特征,2013—2016年4期剖面缓冲区内相干点目标集形变信息如图5所示。

图5

图5   2013—2016年研究区微小差异性形变

Fig.5   Tiny differential deformation of active fault in the study area from 2013 to 2016


图5对缓冲区内相干目标点的沉降信息进行分析发现,2013—2016年间,穿越唐山市主城区的3条主要断裂中,在剖面线位置,唐山—古冶断裂和陡河断裂两侧差异形变较为明显,巍山—长山南坡断裂在此次研究周期内未发现明显差异形变。

唐山—古冶断裂两侧的差异性最为明显,断裂西盘相对东盘沉降速率略小,各年度形变差异均在2 mm/a左右,两侧差异性沉降在2015年最为显著。唐山—古冶断裂晚第四纪活动性强,构成了唐山断裂带中规模最大的一条断裂,错断了第四系内各层位地层界面,1976年唐山地震发震层就位于该断裂南段。据跨唐山—古冶断裂的监测台站水准显示该断裂1997年以前断层垂直方向活动速率较高,东盘相对于西盘下降[4],此次结果也显示出东盘下降速率较快。

陡河断裂剖面位置西盘相对东盘沉降速率略大,在1~2 mm/a,2014年度差异不明显。该断裂北起陡河水库东岸,东盘上升形成一基岩陡坎,西盘下落300 m,浅层地震勘查显示断层两侧第四纪厚度相差70 m[11],西盘较厚的第四纪地层更易发生垂向压缩形变。

巍山—长山南坡断裂由一些断断续续及平行的NE向断层组成,多为倾向NW的逆断层,1993年在凤凰山公园内和北新东道浅层地震勘探中提示上断点在第四系地层中埋深10 m,为前更新世晚期断层,晚更新世以来未见明显活动[12]。在2013—2016年间的监测周期内未发现明显差异性形变。

InSAR技术可监测到的微小差异主要是垂向形变引起,由于断裂两侧的地层差异,尤其第四系易压缩松散层厚度的不同造成断裂两侧垂向形变的空间分异性,会使得在断裂两侧沉降出现微小差异。另外值得说明的是,因InSAR相干点目标的测量起算基准问题,本研究只关注差异性沉降,对于地面沉降的绝对值需要参考地面其他测量手段。

5 结论

通常城区具有较高的相干性,是本次研究活动断裂微小形变活动的前提,但人为活动的干扰也较多,因此监测结果需要与其他手段监测结果相互印证,以提高可信度。

1)活动断裂的形变量级很小,短时间监测结果中由于量级过小而易被其他误差所掩盖,如大气误差、轨道残差等。

2)沿断裂近似垂向做剖面分析发现了断裂两侧的微小差异形变,唐山—古冶断裂较为明显,多年间的监测显示最大的差异量在2 mm/a左右。

3)RADARSAT-2卫星C波段InSAR监测结果能够明显地呈现出活动断裂两侧的微小差异性形变。对活动断裂缓冲区内的相干点目标集监测结果进行分析较单纯利用剖面线分析要更为明显。

4)活动断裂活动通常表现在水平(张压或走滑)方向和垂直(升降)方向上呈现出显著的时空分异特征。InSAR技术可以作为活动断裂两侧垂直方向微小差异性形变监测的一种辅助手段。

参考文献

Fialko Y.

Interseismic strain accumulation and the earthquake potential on the southern San Andreas Fault system

[J]. Nature, 2006,441(22):967-971.

[本文引用: 1]

屈春燕, 单新建, 张国宏, .

时序InSAR断层活动性观测研究进展及若干问题探讨

[J]. 地震地质, 2014,36(3):731-748.

DOI:10.3969/j.issn.0253-4967.2014.03.015      URL     [本文引用: 1]

基于大量SAR数据的时序InSAR技术已被广泛应用于断裂带震间长期缓慢地壳形变的观测研究,文中对现有多种时序InSAR方法(如Stacking,PSInSAR,SBAS等)的基本原理和技术特点进行了概括总结。采用PSInSAR技术,利用2003—2010年的17景降轨ENVISAT/ASAR数据,在海原断裂带中段开展了震间地壳形变观测的实验研究,获得了海原断裂中段的跨断层InSAR形变速率场整体图像,显示了约5mm/a的左旋走滑运动速率,与GPS和地质学研究基本一致。在此基础上,对时序InSAR断层活动性观测研究中的若干问题,如LOS形变速率与目标断层走向的关系、LOS 形变速率与跨断层观测宽度的关系、LOS 形变速率与GPS等其他形变速率的关系以及LOS 形变速率场揭示的断层相互作用及断层滑动方式等进行了分析探讨。这些将为进一步推进InSAR构造变形监测研究提供参考。

Qu C Y, Shan X J, Zhang G H, et al.

The research progress in measurement of fault activity by time series InSAR and discussion of related issues

[J]. Seismology and Geology, 2014,36(3):731-748.

DOI:10.3969/j.issn.0253-4967.2014.03.015      URL     [本文引用: 1]

In the past few years, the improved InSAR technology based on time series analyses to many SAR images has been used for measurement of interseismic deformation along active fault. In the paper, we first made a summary and introduction to the basic principle and technical characteristics of existing Time Series InSAR methods(such as Stacking, PSInSAR, SBAS). Then we presented a case study on the central segment of Haiyuan Fault in west China. We attempt to use the PS-InSAR(Permanent Scatter InSAR)technique to estimate the motion rate fields of this fault. We processed and analyzed 17 scenes of ENVISAT/ASAR images in descending orbits from 2003-2010 using the PS-InSAR method. The results reveal the whole movement pattern around the Haiyuan Fault and a remarkable velocity gradient of about 5mm/a across the central segment of the fault. The motion scenes are consistent with left-lateral strike-slip. On this basis, we make a discussion on some issues about observation of fault activity using Time Series InSAR methods, such as the changes of LOS deformation rates with fault strike and region width observed across a fault, fault reciprocity and motion style indicated by Time Series InSAR rate map and the relationship between the InSAR LOS deformation and the ones from other methods. All these studies will benefit the promotion of InSAR application in detection of tectonic movement.

Zhang L, Cao D Y, Zhang J F, et al.

Interseismic fault movement of Xianshuihe fault zone based on across-fault deformation data and InSAR

[J].Pure and Applied Geophysics, 2019(176):649-667.

[本文引用: 1]

周海涛, 郭良迁, 张立成.

唐山断裂现代活动性研究

[J]. 华北地震科学, 2009,27(3):17-22.

[本文引用: 2]

Zhou H T, Guo L Q, Zhang L C.

Study on modern activity of Tangshan fault

[J]. North China Earthquake Sciences, 2009,27(3):17-22.

[本文引用: 2]

Ferretti A, Prati C, Rocca F.

Permanent scatterers in SAR interferometry

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):1-20.

[本文引用: 1]

Wemer C, Wegmiiller U, Strozzi T, et al.

Interferometric point target analysis for deformation mapping

[J].IEEE Transactions on Geoscience and Remote Sensing, 2003(7):4362-4364.

[本文引用: 1]

Ferretti A, Tamburini A, Novali F, et al.

Impact of high resolution radar imagery on reservoir monitoring

[J]. Energy Procedia, 2011,(4):3465-3471.

DOI:10.1016/j.egypro.2011.02.272      URL     [本文引用: 2]

Depending on reservoir characteristics and depth, oil or gas production can induce surface subsidence or, in the cases of EOR and CCS, ground heave, potentially triggering fault reactivation and in some cases threatening well integrity.Mapping the surface effects of fault reactivation, due to either fluid extraction or injection, usually requires the availability of hundreds of measurement points per square km with millimeter-level precision, which is time consuming and expensive to obtain using traditional monitoring techniques, but can be readily obtained with InSAR data. Moreover, advanced InSAR techniques developed in the last decade are capable of providing millimeter precision, comparable to optical leveling, and a high spatial density of displacement measurements over long periods of time, without the need for installing equipment or otherwise accessing the study area.Until recently, a limitation to the application of InSAR was the relatively long revisiting time (24 or 35 days) of the previous generation of C-band satellites (ERS1-2, Envisat, Radarsat). However, a new generation of X-band radar satellites (TerraSAR-X and the COSMO-SkyMed constellation), which have been operational since 2008, are providing significant improvements. TerraSAR-X has a repeat cycle of 11 days, while the joint use of two sensors of the COSMO-SkyMed constellation have an effective repeat cycle of just 8 days. With the launch of the fourth satellite of the constellation, in 2010, COSMO-SkyMed will have an effective revisiting time of just 4 days, allowing "near real-time" applications. Indeed, by combining two acquisition geometries (e. g. data acquired along ascending and descending orbits), it will be possible, on average, to have a new scene over the area of interest every other day.Additional advantages of the new X-band satellites are: a higher sensitivity to target displacement and a higher spatial resolution (the density of measurement points can be increased by an order of magnitude, possibly exceeding 2,500 PS/km(2)).In this paper, we present some examples of the application of X-band SAR data to reservoir monitoring. Special attention will be given to CCS projects where InSAR data could become a "standard" monitoring tool. The paper will highlight the technical features of the new sensors, the possible synergy between TerraSAR-X and COSMO-SkyMed data, as well as the importance of a careful analysis of atmospheric disturbances affecting SAR data covering the area of interest, in order to retrieve high quality displacement data. Finally, some conclusions will be drawn supporting recommendations about future CCS monitoring programs. (C) 2010 Published by Elsevier Ltd.]]>

Berardino P, Fornaro G, Lanari R, et al.

A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383.

DOI:10.1109/TGRS.2002.803792      URL     [本文引用: 1]

邓起东.

城市活动断裂探测和地震危险性评价问题

[J]. 地震地质, 2002,24(4):601-605.

URL     [本文引用: 2]

城市范围内直下型活动断裂突发错动产生的直下型大地震,直接威胁城市和人民生命财产的安全.城市活动断裂探测和地震危险性评价是为城市减灾服务的一项系统工程,也是活动构造研究面临的一项新的工作.这一工作的核心是要解决城市范围内的断裂定位、断裂最新活动、断裂的深部背景、断裂的地震危险性和地面错动危险性及减灾对策.为了更好地理解这一问题,作者用"有没有、活不活、深不深,震不震,错不错,好对策"这6句话来表示其核心内容.文中对这些问题作了具体的说明.

Deng Q D.

Exploration and Seismic hazard assessment of active faults in urban areas

[J]. Seismology and Geology, 2002,24(4):601-605.

URL     [本文引用: 2]

Displacements along active faults buried directly beneath major cities create devastating earthquakes that seriously threaten the safety of human lives and properties. Exploration and seismic hazard assessment of active faults in urban areas are thus an important systematic engineering for disaster mitigation in major cities. It is also a new field for active tectonic studies. The kernel of this work includes determining of the exact location of active faults, dating the ages of last tectonic activity, relating the shallow level faults to structures in the crustal depth, assessing seismic hazard and potential for surface offsets, and formulating countermeasures for disaster mitigations. We use the following simple phrases to express these key scientific problems: Where are the faults? Are they active? How deep are they? Will they create earthquake? Will they form surface offsets? What are the countermeasures? This paper explains these key scientific problems in detail.

李传友, 汪一鹏, 王志才.

中国东部城市地区隐伏断裂上断点与最新活动时代关系的初步分析——以邢台、唐山地震区为例

[J]. 地震地质, 2007,29(2):431-445.

URL     [本文引用: 1]

中国东部城市地区大多为较厚第四系松散物覆盖区,许多城市附近发育了具有相当规模的隐伏断裂。在这些第四系较厚覆盖区发育的隐伏断裂的上断点是否代表了断裂的最新活动时代?文中通过对邢台、唐山等发生过强震的中国东部城市附近地区地质、地球物理、地震活动、地形变等资料的综合分析,来讨论这些较厚第四系覆盖区隐伏断裂的上断点与断裂的最新活动年代的关系问题。初步分析表明,作为邢台地震和唐山地震发震断裂的新河断裂和唐山断裂带,并不象其上断点显示的为晚更新世不活动断裂或者为局部活动段,而均为大型活动断裂。由此认为,在中国东部沉积层较厚地区,不能完全根据断裂断错的最新地层确定断裂的最新活动时代。对于一条穿过新沉积较厚地区的断裂,其最新活动时代应根据构造背景、断裂对新地层的控制作用、断错最新地层、新地层沉积厚度、构造地貌、地震活动、地形变、现今构造应力场等综合判定。

Li C Y, Wang Y P, Wang Z C.

Some analyses on the relation between the upper offset point and the latest activity times of buried faults in cities of eastern China:Taking the Xingtai and Tangshan earthquake regions as an example

[J]. Seismology and Geology, 2007,29(2):431-445.

URL     [本文引用: 1]

The urban area in the eastern China region is mostly covered by the relatively thick loose Quaternary deposits,below which,in many cities,there exist many considerably large buried faults.In these thick-Quaternary-covering areas,does the date of the upper layers dislocated by the buried faults represent the latest faulting? In this paper,based on the integrated analysis on the data of geology,geophysics and earthquakes of cities in the east of China,including Xingtai and Tangshan,we discussed the relation between the upper offset point and the latest activity times of the buried faults in these areas covered by thick Quaternary.Our study shows,in the area with very thick recent deposits in East China,one should not determine the latest faulting of one fault fully according to the younger layers displaced by the fault.To a fault running through the area covered with thick young deposits,its latest active period should be determined comprehensively by the tectonic settings,the controlling of the fault to the young strata,the youngest layer displaced by the fault,the thickness of the young deposits,seismicity and modern tectonic stress field,etc.

王景明, 王文秋, 苏幼坡.

唐山市区断裂活动与地质灾害

[J]. 河北理工学院学报, 1998,20(1):75-83.

[本文引用: 1]

Wang J M, Wang W Q, Su Y P.

The fracture activities and geological calamity in Tangshan City

[J]. Journal of Hebei Institute of Technology, 1998,20(1):75-83.

[本文引用: 1]

Liu K, Qu G S, Chen J Q, et al.

Recurrence characteristics of major earthquakes in the Tangshan area,north China

[J]. Acta Geologica Sinica-English Edition, 2013,87(1):254-271.

DOI:10.1111/1755-6724.12046      URL     [本文引用: 1]

The Tangshan area lies in the North China plain where an Ms 7.8 earthquake occurred in 1976, which is associated with a hidden active fault. To reveal the recurrence characteristics of major quakes in this area over a relatively long time, we have conducted a comprehensive study using geological investigations, shallow seismic exploration, boreholes, trench observations and geological dating. Five paleoearthquakes were recognized in a 6.4m-deep trench west to the Tangshan Asylum. Among them, the former three events occurred between 56.78 +/- 4.83ka and 89.39 +/- 7.60 ka, and the fourth event occurred around 6.9 ka, respectively, and then followed by the fifth in 1976. Seven boreholes were deployed crossing the ground fissure formed by the 1976 Tangshan earthquake at the site of No. 10 Middle School, where we have identified 25 liquefaction events in the boreholes TZC65 and 67. By the comprehensive analysis of the trench, the liquefaction events from the boreholes and the depth-time curves of drill cores, we suggest a new recurrence model of major quakes in this area. It is not a constant recurring cycle since 210 ka, instead consisting of six alternating seismically quiet and active stages. Of them, stage I (>177 ka) was a quiescent period in seismicity, stage II (from 143 ka to 177 ka) was an active one, stage III (from 102 ka to 143 ka) was quiescent again, stage IV (from 56 ka to 102 ka) had many quakes, stage V (from 6.9 ka to 56 ka) became quiet, and stage VI (from 6.9 ka to now) was the beginning of a new seismically active period.

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发