自然资源遥感, 2022, 34(3): 106-111 doi: 10.6046/zrzyyg.2021291

技术应用

基于PS-InSAR上海地区地表沉降监测与分析

张志华,1,2,3, 胡长涛1,2,3, 张镇1,2,3, 杨树文1,2,3

1.兰州交通大学测绘与地理信息学院,兰州 730070

2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070

3.甘肃省地理国情监测工程实验室,兰州 730070

PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai

ZHANG Zhihua,1,2,3, HU Changtao1,2,3, ZHANG Zhen1,2,3, YANG Shuwen1,2,3

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China

2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China

3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China

责任编辑: 陈理

收稿日期: 2021-09-13   修回日期: 2022-01-5  

基金资助: 国家重点研发计划项目重点专项项目“星空地遥感立体监测技术”(2017YFB0504201)
“国土资源与生态环境安全监测系统”(2017YFB0504203)
国家自然科学基金项目“隧道及其隐伏不良地质体三维多尺度集成建模研究”(41861059)
“基于高分辨率卫星影像的彩钢板建筑与城市空间结构演变关系研究”(41761082)
“残缺和异质三维模型簇的对应关系协同计算与协同一致分割研究”(61862039)
兰州交通大学优秀平台支持项目(201806)

Received: 2021-09-13   Revised: 2022-01-5  

作者简介 About authors

张志华(1980-),男,博士,教授,研究方向为遥感图像处理与软件开发。Email: zhzhihua99@163.com

摘要

城市地表沉降对人类生活影响越来越严重,有效监测地表沉降的方法研究显得尤为重要。为监测上海市的地表沉降状况,使用永久散射体干涉测量(permanent scatterer-interferometric synthetic aperture Radar,PS-InSAR)技术对2019—2020年24景覆盖上海地区的Sentinel-1A数据进行处理,然后使用SRTM1数字高程模型进行残差相位修正,提取了2 a的地表沉降结果。通过对监测结果的沉降速率和沉降累计量进行分析,表明上海市城区主要为不均匀地表沉降,主城区分布多个沉降漏斗,与历史沉降数据对比,个别沉降漏斗与上海市地表历史沉降漏斗数据相对应。通过随机选取地面特征点的地表沉降时序数据,可知地表沉降的形变量在各时间单位上基本一致,其变化趋势有较高的一致性,验证了PS-InSAR监测方法的可靠性。研究结果可为上海市地质灾害防治提供数据支撑和决策依据。

关键词: 地表沉降; InSAR; 永久散射体干涉测量; 上海

Abstract

Urban surface subsidence has increasingly severe impacts on human life, making it particularly important to study the methods for effectively monitoring surface subsidence. To monitor the surface subsidence in Shanghai, this study processed 24 scenes of 2019—2020 Sentinel-1A data covering the city using the PS-InSAR technique. After treatment using the permanent scatterer interferometry technique, the residual phase correction was performed using SRTM1 DEM, and the surface subsidence results of the two years were extracted. The analysis of the subsidence rate and cumulative subsidence amplitude in the monitoring results shows that the urban area mainly shows uneven surface subsidence with multiple subsidence funnels, some of which correspond to the historical subsidence data. As shown by time-series surface subsidence data of seldomly selected ground characteristic points, the surface subsidence at these points basically had the same deformation amplitude at different times and highly consistent changing trends, verifying the reliability of the PS-InSAR monitoring method. The results of this study will provide data and decision-making bases for geologic disaster prevention and control in Shanghai.

Keywords: surface subsidence; InSAR; PS-InSAR; Shanghai

PDF (3457KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张志华, 胡长涛, 张镇, 杨树文. 基于PS-InSAR上海地区地表沉降监测与分析[J]. 自然资源遥感, 2022, 34(3): 106-111 doi:10.6046/zrzyyg.2021291

ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Land & Resources, 2022, 34(3): 106-111 doi:10.6046/zrzyyg.2021291

0 引言

地表沉降现象是由多种因素(地质环境、地表载荷和人为要素影响等)引起的地面缓慢下降的地质现象,是一种缓慢变化的地质灾害,具有不可逆转的特性,其影响将长期存在[1]。部分地区过高的地表沉降速率会导致多处地区不均匀地表沉降的现象[2]。传统测量地表沉降的方法,如水准测量、基岩标测量和分层标测量[3],都只能获得地面离散点的沉降信息,不能进行大范围地区的动态监测[4-6]。因此,亟需研究能够进行大面积多时序动态监测地表沉降的技术,对地表沉降区域进行监测分析。

合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术,不受时间以及天气的影响,能够在大范围内实时监测地面的微小形变,很多学者对此进行较为深入的研究。Ferretti等[7]提出的永久散射体干涉测量技术(persistent scatterer InSAR,PS-InSAR)是时序InSAR 中的一种,对城市地区沉降监测效果较好,监测精度可以达到毫米级。时序InSAR技术在城市地表的沉降监测方面应用越来越多。高二涛等[8]利用2015—2017年共23景Sentinel-1A影像,使用小基线集技术(small baseline subsets,SBAS)-InSAR和PSI-InSAR进行处理,获得基于2种方法处理的南京城区地表沉降数据,使用交叉验证的方法对2组数据结果进行分析,结果表明,这2种方法获取的结果呈高度一致性; 麻源源等[9]利用PS-InSAR技术对天津地区的沉降进行监测,并与水准测量的结果进行比对,证明PS-InSAR技术在城市地表沉降监测结果的可靠性,其监测结果可以达到毫米级精度; 刘欣等[10]使用PS-InSAR和SBAS-InSAR技术分别对济宁市区的地表沉降进行监测,并对2种技术方法得到的沉降结果进行分析和对比,从结果的准确性和精度方面验证了这2种技术在城市地表监测中的适用性。综上所述,PS-InSAR方法可应用于城市地表沉降监测,并具有很高的精度。基于此,本文采用PS-InSAR对上海地区进行沉降监测。

1 研究区概况及数据源

上海市位于我国华东沿海地区的长江与黄浦江交汇处南侧,行政区划面积为6 340.5 km2,其中城区面积为2 648.6 km2[11]。上海市全境为长江冲积平原,在西南部有少量而分散的裸露岩石山丘,整个行政区管辖内的平均海拔在3 m左右,整体地势平缓。由于上海特殊的地理位置,其地表属于软土地基,特殊的地质环境致使地表沉降灾害成为上海市主要地质灾害之一。上海市城区地表沉降监测采用2019年1月—2020年12月共24景Sentinel-1A数据。数字高程模型(digital elevation model,DEM)数据采用的是SRTM1数据,其空间分辨率为30 m。上海市城区地表沉降监测的研究区域主要包括上海市的中心城区、浦东新区的市区部分、闵行区北部、嘉定区东南角、宝山区南部部分地区、青浦区和松江区部分区域,其中市中心城区包括黄浦区、杨浦区、虹口区、长宁区、徐汇区、静安区和普陀区,具体地理位置如图1所示。

图1

图1   研究区地理位置

Fig.1   Geographical location of the study area


2 PS-InSAR数据处理

PS-InSAR 技术主要是分析地表点目标的变化状态,处理的结果为大量的矢量点,每一个矢量点包含了对应地表形变的信息。为了确保高精度和准确性,本研究至少需要使用20景的多时相数据,相邻2景的时间需要有连续性,并且时间间隔不能太大(一个月左右一景数据最佳)。由于城市中存在大量的建筑物,永久散射体(permanent scatterer,PS)点大都选择在城市里固定建筑物的边角。利用PS-InSAR技术对城市地表监测,可以得到毫米级的位移,并借助多时相数据的时间序列可推算出地表变形速率。数据处理的具体技术流程如图2所示。

图2

图2   PS-InSAR技术流程

Fig.2   PS-InSAR technology flow


2.1 连接图生成

通过连接多时相Sentinel-1A数据集,生成数据对和连接图。本文使用2019—2020年的24景上海地区Sentinel-1A数据,共生成23对干涉对,以2020年2月12日的影像为超级主影像,生成空间基线和时间基线连接图,如图3所示。

图3

图3   连接图

Fig.3   Connection diagram


图3中超级主影像为黄色点所对应的数据,绿点代表合格的影像,已成功配对,序号表示影像获取时间期号。通过图3可知本实验所选的影像数据全部都为合格的影像数据。

2.2 干涉工作流

干涉工作流主要包括: 配准、去平和滤波、生成平均强度图和振幅离差指数计算。配准时,将除主影像外的数据与主影像进行配准。在参数设置中距离向和方位向比例设置为6∶1,这样可以避免由于基线太长而产生快速变化的干涉条纹[12]。使用已处理好的上海地区DEM 数据进行干涉相位的去平地效应操作,DEM精度的高低决定了去平地效应的质量。

振幅离差指数D的计算公式为:

D=σμ

式中: μ为时序上点的振幅平均值; σ为时序上点的振幅标准差[13]D值可表示相位标准差的大小,当D值越大时,相位标准差越小; 当D值越小时,相位标准差越大。

2.3 干涉图生成

通过模型反演获得位移速率和残余地形,用来对合成的干涉图进行去平[14]。得出3种数据: 平均地表形变速率数据、高程数据(DEM数据调整后的值)和多时间相干系数。

2.4 形变速率图生成

基于生成的干涉图,估算并去除大气相位成分,通过变形估算得到最终形变速率[14]。在大气估算过程中,利用散射体的稠密性分布,去除大部分信号的传播延迟波动,利用时间上的高通滤波和空间上的低通滤波进行大气滤波。

2.5 地理编码

对PS-InSAR处理的结果进行地理编码,得到地理编码后的强度数据,如图4所示。

图4

图4   强度数据

Fig.4   Intensity data


此外,还有研究区24个月的地表形变量数据、2019—2020年地表形变速率数据、形变精度数据以及高程精度数据等。

3 监测结果验证与分析

利用PS-InSAR方法,得到了上海市城区2019年1月—2020年12月的沉降数据结果,上海市城区的地表沉降分布不均匀,出现了多个沉降漏斗。为了确定监测结果的准确性,在其沉降研究区域内选择6个特征点进行分析,具体位置如图5所示。

图5

图5   上海市城区地表沉降速率与特征点分布

Fig.5   Surface sedimentation rate and feature points in urban areas of Shanghai


图5中可以看出,1号特征点位于上海地铁3号线东宝兴路站附近; 2号特征点位于上海市浦东新区地铁2号线陆家嘴站,此区域是上海的中央商务区; 3号特征点位于地铁8号线和地铁13号线成山路站的交叉点处; 4号特征点位于地铁14号线吴中路站; 5号特征点位于上海虹桥动车运用所; 6号特征点位于上海科技大学新校区。通过新建矢量点图层对以上6个特征点进行矢量标注,并使用矢量点的位置信息对该点在PS-InSAR处理的沉降结果数据中的点在单位时间内的沉降数据信息进行提取。

为了方便直观地查看获取的特征点在单位时间内的沉降量,随机选取2个特征点将PS结果绘制成地表沉降量时序折线图,如图6所示。由图6可知,在2个特征点上地表沉降的形变量在各时间单位上基本一致,其变化趋势有较高的一致性,验证了PS监测方法的可靠性。

图6

图6   特征点沉降序列

Fig.6   Settlement sequence of feature points


4 地表沉降成因分析

根据提取的地表沉降数据,制作了上海市城区2019年1月—2020年12月共24期时序累计地表沉降数据,从统计数据中可得到: 研究区域内地表沉降累计的变化过程、变化量大小及沉降趋势、主要沉降区域的分布,还绘制了研究区域地表沉降累计时序图,选取其中5期对比,可以发现,随着时间的推移,地表沉降累计时序图中蓝色越来越深,表明地表沉降在逐渐增加,如图7所示。

图7

图7   时序累积地表沉降量

Fig.7   Time-series cumulative surface sedimentation


由于上海市城区地表沉降呈现出不均匀分布的状态,在杨浦区、虹口区、静安区和浦东新区陆家嘴部分地区出现比较明显的沉降漏斗(沉降漏斗A和B),在徐汇区和浦东新区相连的黄浦江两岸也有明显的沉降漏斗(沉降漏斗C和D),其中沉降漏斗A和B与上海市历史沉降漏斗区域吻合。根据上海市地表沉降历史资料记载,处于静安区和虹口区的宝源路一带沉降漏斗A与在1921年上海市发现地表沉降时的沉降漏斗位置较吻合; 处于杨浦区和虹口区的平凉路和杨树浦路一带的沉降漏斗B,自20世纪40年代就有地表沉降记载。沉降漏斗C和D的区域结果与文献[15]的上海地面沉降监测结果的沉降漏斗相吻合,其中与本次实验在2019年时间重合。研究区特征点与沉降漏斗位置如图8所示。

图8

图8   特征点与沉降漏斗的位置

Fig.8   Location of feature point and settling funnel


其中1号特征点位于沉降漏斗A的区域范围内,可以通过对特征点1进行沉降累计量时序分析,从而得到特征点1的沉降变化过程和趋势,特征点1的时序变化也就代表着沉降漏斗A的累计时序变化。根据特征点1地表沉降量变化的大小和趋势可以发现,特征点1在2019年1—8月地表形变整体较缓和稳定,在2019年9月—2020年12月地表形变整体呈现出剧烈下沉状态,其年沉降速率达到了20.00 mm/a,属于高速率地表沉降区域。在2020年12月特征点1的地表沉降量累计达到25.20 mm。根据研究区沉降监测数据显示,研究区内最大地表沉降量达到90 mm左右。

如此高速率的地表沉降现象与上海市所处的地质条件是密切相关的,上海市整体的地质状况如表1 所示[16]。上海市地处长江三角洲沿海地区,属于较晚成陆地区,市区范围内整体地势平坦,平均标高处于3~4.5 m,属于比较典型的软土类地区。软土地质类型受城市的市政等工程建设影响比较大[17]。随着上海市城市建筑物和地上、下交通管线等设施的建设,增加了大量的地表载荷量,从而导致上海市地表软土层形变产生地表下沉; 同时,地下水的过量抽取导致土层结构受到破坏,地表承载能力进一步减弱,从而产生地表沉降变形。

表1   上海地区地质信息

Tab.1  Summary of geological information of Shanghai area(m)

地质构造土体类型厚度顶部埋深水文地质
表层土黏土1.5~4.00.5~2.0
第一沙土层淤泥质粉砂3.0~20.02.0~3.0潜水层
第一软土层淤泥质粉质黏土5.0~20.03.0~15.0
软黏土
第二软土层软黏土,黏土10.0~25.015.0~20.0微承压含水层
粉砂
第一硬土层硬黏土1.5~6.020.0~30.0
第二砂土层淤泥质粉砂10.0~22.028.0~35.0第一含水层
粉质细砂
第三软土层含粉砂黏土20.0~40.040.0~50.0
第三砂土层含黏土粉砂20.0~60.061.0~77.0第二含水层
细砂,含砾细砂

新窗口打开| 下载CSV


5 结论

基于PS-InSAR方法,以上海市部分地区为研究区,利用Sentinel-1A 24幅影像数据,对地表沉降情况进行研究,得出该地区的地表沉降结果,并对其进行验证和成因分析。主要得到以下结论:

1)通过选定的特征点单位时间地表沉降量可知,地表沉降的形变量在各时间单位上基本一致,其变化趋势与监测结果有较高的一致性,验证了PS-InSAR监测方法的可靠性。

2)通过分析监测结果的沉降速率和沉降累计量可知,上海市城区主要为不均匀地表沉降,主城区分布多个沉降漏斗。通过数据分析对比可知,个别沉降漏斗与上海市地表历史沉降漏斗数据相对应,结合地质信息的分析可知,上海市城区的地表沉降与其地质环境、人类活动和地面载荷都有一定的关联关系。

但是,本研究中没有获取到上海市的人口分布等相关数据,关于人口分布对地面沉降的影响有待进一步研究。

参考文献

张静, 冯东向, 綦巍, .

基于SBAS-InSAR技术的盘锦地区地面沉降监测

[J]. 工程地质学报, 2018, 26(4):999-1007.

[本文引用: 1]

Zhang J, Feng D X, Qi W, et al.

Monitoring land subsidence in Panjin region with SBAS-InSAR method

[J]. Journal of Engineering, 2018, 26(4):999-1007.

[本文引用: 1]

汪宝存, 朱琳, 潘登, .

郑州市地面沉降时空演变规律研究

[J]. 国土资源遥感, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.

[本文引用: 1]

Wang B C, Zhu L, Pan D, et al.

Research on temporal and spatial evolution law of land subsidence in Zhengzhou

[J]. Remote Sensing for Land and Resources, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.

[本文引用: 1]

Yang Q, Ke Y H, Zhang D Y, et al.

Multi-Scale analysis of the relationship between land subsidence and buildings:A case study in an eastern Beijing urban area using the PS-InSAR technique

[J]. Remote Sensing, 2018, 10(7):1006.

DOI:10.3390/rs10071006      URL     [本文引用: 1]

Lyu M Y, Ke Y H, Guo L, et al.

Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite Radar interferometry

[J]. GIScience and Remote Sensing, 2020, 57(1):140-156.

DOI:10.1080/15481603.2019.1676973      URL     [本文引用: 1]

袁悦. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[D]. 北京: 中国地质大学(北京), 2020.

[本文引用: 1]

Yan Y. Ground subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2020.

[本文引用: 1]

聂运菊, 刘国祥, 石金峰, .

基于PSI技术监测上海市2009年-2010年区域地表沉降

[J]. 遥感信息, 2013, 28(2):56-61.

[本文引用: 1]

Nie Y J, Liu G X, Shi J F, et al.

Ground subsidence of Shanghai from 2009 to 2010 monitored by PSI technique

[J]. Remote Sensing Information, 2013, 28(2):56-61.

[本文引用: 1]

Ferretti A, Prati C, Rocca F.

Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.

DOI:10.1109/36.868878      URL     [本文引用: 1]

高二涛, 范冬林, 付波霖.

基于PS-InSAR和SBAS技术监测南京市地面沉降

[J]. 大地测量与地球动力学, 2019, 39(2):158-163.

[本文引用: 1]

Gao E T, Fan D L, Fu B L.

Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology

[J]. Geodesy and Geodynamics, 2019, 39(2):158-163.

[本文引用: 1]

麻源源, 左小清, 麻卫峰.

基于PS-InSAR的天津地区沉降监测及分析

[J]. 遥感技术与应用, 2019, 34(6):1324-1331.

[本文引用: 1]

Ma Y Y, Zou X Q, Ma W F.

Settlement monitoring and analysis of Tianjin area based on PS-InSAR

[J]. Remote Sensing Technology and Application, 2019, 34(6):1324-1331.

[本文引用: 1]

刘欣, 商安荣.

PS-InSAR和SBAS-InSAR在城市地表沉降监测中的应用对比

[J]. 全球定位系统, 2016, 41(2):101-105.

[本文引用: 1]

Liu X, Shang A R.

Application contrast of PS-InSAR and SBAS-InSAR in urban surface subsidence monitoring

[J]. GNSS World of China, 2016, 41(2):101-105.

[本文引用: 1]

上海市统计局. 上海统计年鉴2020[M]. 北京: 中国统计出版社, 2020.

[本文引用: 1]

Shanghai Municipal Bureau of Statistics. Shanghai statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020.

[本文引用: 1]

Cigna F, Tapete D.

Present-day land subsidence rates,surface faulting hazard and risk in Mexico City with 2014—2020 Sentinel-1 IW InSAR

[J]. Remote Sensing of Environment, 2021, 253:1-19.

[本文引用: 1]

张兆旭. 基于PS-InSAR技术的高速铁路沉降监测研究[D]. 北京: 中国地质大学(北京), 2016.

[本文引用: 1]

Zhang Z X. Research on settlement monitoring of high speed railway based on PS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2016.

[本文引用: 1]

Dumka R K, SuriBabu D, Malik K, et al.

PS-InSAR derived deformation study in the Kachchh,Western India

[J]. Applied Computing and Geosciences, 2020, 8:1-8.

[本文引用: 2]

熊佳诚, 聂运菊, 罗跃, .

利用双极化Sentinel-1数据监测城市地面沉降——以上海市为例

[J]. 测绘通报, 2019(11):98-102,129.

[本文引用: 1]

Xiong J C, Nie Y J, Luo Y, et al.

Monitoring urban land subsidence by dual-polarization Sentinel-1 data:A case study of Shanghai

[J]. Bulletin of Surveying and Mapping, 2019(11):98-102,129.

[本文引用: 1]

史玉金. 上海地区地面沉降新特征及对重大市政设施影响研究[D]. 上海: 上海交通大学, 2018.

[本文引用: 1]

Shi Y J. Recent characteristics of land subsidence in Shanghai and its effect on performance of key municipal facilities[D]. Shanghai: Shanghai Jiao Tong University, 2018.

[本文引用: 1]

朱菊艳. 沧州地区地面沉降成因机理及沉降量预测研究[D]. 北京: 中国地质大学(北京), 2014.

[本文引用: 1]

Zhu J Y. Research on land subsidence mechanism and prediction of settlement in Cangzhou area[D]. Beijing: China University of Geosciences(Beijing), 2014.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发