地形及NDVI在林火遥感监测二次识别中应用的方法探讨
Methods for the application of topography and NDVI in re-identification of remote sensing-based monitoring of forest fires
通讯作者: 马鑫程(1986-),男,硕士,主要从事工程测量研究。Email:maxincheng@hpdi.com.cn。
责任编辑: 陈理
收稿日期: 2021-05-11 修回日期: 2022-05-7
基金资助: |
|
Received: 2021-05-11 Revised: 2022-05-7
作者简介 About authors
陈艳英(1974-),女,硕士,主要从事遥感及地理信息系统在地表监测及反演中的应用研究。Email:
挖掘归一化植被指数(normalized difference vegetation index,NDVI)及地形因素在地表分类中具有指示意义,其结果可很好地应用于特定场景。利用2002—2020年AQUA/MODIS NDVI及地形指数(高程及坡度)提取重庆地表分类信息,将重庆地表分为林地、草地、果园、旱地、水田、水体和建筑用地7类。基于重庆地形破碎致使农、林、草用地交错分布的特征及防火需求,将林地、草地、果园、旱地划分为林火关注区,水田、水体、建筑用地划分为非林火关注区。利用林火关注区分级结果对2002—2020年AQUA/MODIS监测热点、2014—2020年FY3-C/VIRR监测热点、2019—2020年FY3-D/MERSI监测热点进行二次识别。结果表明,单项地类提取结果,除旱地和果园等经济林区外,其余各地类提取精度在64%以上; 林火关注分区精度在86%以上。利用林火关注分区结果对遥感监测林火点进行二次识别,发现AQUA/MODIS监测的林火点中,46.27%的点在非林火关注区,FY3-C/VIRR和FY3-D/MERSI监测的林火点中,分别有26.47% 和11.76%的点在非林火关注区。对2021年5月1—2日林火遥感监测结果进行二次识别,AQUA/MODIS和TERRA/MODIS监测结果中,有81.08%的点落在非林火关注区,FY3-C/VIRR监测结果有71.4%落在非林火关注区。利用NDVI及地形指数提取复杂地形区域地表分类信息并应用于林火遥感监测二次识别,可有效降低复杂地形区域林火监测干扰信息,降低热点核实人力物力投入。
关键词:
The indicative significance of normalized vegetation index (NDVI) and terrain factors in land classification can be applied to specific scenarios. This study extracted the land classification information of Chongqing using the AQUA/MODIS NDVI and terrain indices (height and slope) of 2002—2020 and accordingly divided the land in Chongqing into seven types, i.e., forest land, grassland, orchard, dry fields, paddy fields, waters, and residential and building land, with the former three types being economic forest land. Based on the characteristics of broken terrain caused by the staggered distribution of agricultural, forest, and grassland, as well as the need for fire prevention in Chongqing, this study categorized the economic forest land and dry fields as concern areas of forest fires and categorized paddy fields, waters, and residential and building land as unconcerned areas of forest fires. The hotspots monitored using AQUA/MODIS in 2002—2020, FY3-C/VIRR in 2014—2020, and FY3-D/MERSI in 2019—2020 individually were re-identified based on the classification results of the concern areas of forest fires. The results are as follows. The extraction accuracy of individual land types (except for orchard and dry fields) was over 64%, and that of the concern areas of forest fires was over 86%. Based on the classification results of concern areas of forest fires, the forest fire points monitored using the remote sensing techniques were re-identified. The re-identification results showed that the 46.27%, 26.47%, and 11.76% of forest fire points monitored using AQUA/MODIS, FY3-C/VIRR, and FY3-D/MERSI, respectively were in unconcerned areas of forest fires. The forest fires monitored using remote sensing techniques on May 1-2, 2021 were re-identified, and 71.4%and 81.08% of forest fire points monitored using FY3-C/VIRR and both AQUA/MODIS and TERRA/MODIS, respectively were in unconcerned areas of forest fires. Therefore, extracting land classification information in complex terrain areas using NDVI and terrain indices and applying the extraction results to the re-identification of forest fires monitored using remote sensing techniques can effectively reduce the interference to forest fire monitoring in complex terrain areas, thereby minimizing the input of manpower and properties for the verification of hotspots.
Keywords:
本文引用格式
陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波.
CHEN Yanying, MA Xincheng, XU Yanping, WANG Ying, WANG Yanbo.
0 引言
林火遥感监测的算法主要包括指数法[3-4]、亮温结合阈值法[5-6]、多通道彩色合成法[7]、绝对火点识别法[8-9]和上下文法等。基于众多林火监测方法,可用于林火监测的波段也不断被挖掘,除了传统的中心波段在4 μm和11 μm的中红外及远红外波段外,可见光等波段在林火监测中也发挥着不同的作用。在实际监测过程中,有大部分被判定为林火的像元点并无林火发生,称之为空报; 而被判定为非林火的像元可能包含有温度低、面积小的林火,称之为漏报。无论是空报还是漏报,都大大降低了卫星监测林火的可信度。空报和漏报之间,及其与监测准确度之间是矛盾的,降低空报率,漏报率会升高,反之亦然; 但无论空报率或漏报率升高都会降低监测准确度。
为了提高林火遥感监测的准确度,需要对监测的异常高温点进行筛查,以便去掉非林火关注区热点,提高监测的准确度。对高温点进行筛查的方法和手段较多,但都存在一定的局限性,如用高分辨率数据检验低分辨率数据,缺点是与检测热点同步的高分辨率卫星数据不能随时获取; 现场调查及无人机巡航,缺点是成本较高,且反馈时间较长。
在重庆应用卫星监测林火还存在以下问题: 在卫星红外通道易出现高温点的地物如工矿区、工业热源、建筑群、水体等区域与林区交叉分布,这些非林火高温点不仅降低了林火监测的精度,还增加了排查的难度; 重庆地形破碎,林地与农用地交错分布,农耕用火不仅难以与林火区分,还经常引发森林火灾,因此对农耕地用火需要加以关注或进行管控。针对以上问题,本文基于归一化植被指数(normalized difference vegetation index,NDVI)及地形指数提取用于林火筛查的地表分类数据,利用该地表分类数据,对卫星监测的地表高温点进行二次识别,从而剔除林火非关注区的异常高温点,提高林火监测的准确度。
1 研究区概况及数据源
1.1 研究区概况
1.2 数据源
1.2.1 AQUA/MODIS地面高温点数据及NDVI数据
整理了2002—2020年AQUA/MODIS 1 km地面高温点数据集MYD14A1及250 m NDVI数据集MYD13Q1,数据范围为H27V05和H27V06 2个区域,数据来源于美国国家航空航天局官网。
1.2.2 FY3-C/VIRR和FY3-D/MERSI地面高温点数据
整理了2014—2020年FY3-C/VIRR和2019—2020年FY3-D/MERSI 1 km地面高温热点数据集,数据来源于中国气象局风云卫星遥感数据服务网。
1.2.3 其他辅助数据
通过91卫图助手桌面端采集了重庆市2 m空间分辨率土地类型样地数据,样地类型包括林地、草地、果园、旱地、水田、水体、建筑用地7类; 收集了空间分辨率12.5 m数字高程模型(digital elevation model,DEM)数据,来源于日本宇宙航空研究所的高级陆地观测卫星-1(Advanced Land Observing Satellite-1,ALOS)。
1.3 数据处理
1.3.1 重庆森林火监测点数据集
选取2002—2020年AQUA/MODIS监测热点数据MYD14A1、2014—2020年FY3-C/VIRR监测热点数据和2019—2020年FY3-D/MERSI作为遥感监测高温热点源。各卫星热点数量见表1。
表1 不同来源热点数量
Tab.1
数据来源 | AQUA/MODIS | FY3-C/VIRR | FY3-D/MERSI |
---|---|---|---|
热点数量/个 | 2 159 | 34 | 28 |
从表1可见,FY3-C/VIRR和FY3-D/MERSI卫星由于监测年限较短,因此监测热点样例较少,共62个 热点; AQUA/MODIS卫星监测年限较长,监测热点较多,共2 159个热点,其中标注9的高可信度热点最少,为182个,标注为8的中可信度热点多达1 618个,标注7的低可信度热点359个。
1.3.2 植被指数数据集
选取2002—2020年AQUA/MODIS 250 m分辨率NDVI数据,通过重投影、格式转换、裁剪后,获取重庆区域的NDVI。为了降低云的影响,将AQUA/MODIS监测的NDVI采用最大值合成法合成逐月NDVI,基于此计算多年月平均NDVI。如果单月NDVI较多年月平均NDVI降低超过0.1,则视为无效值,以当月前后2 a的均值替补。如2018年1月NDVI较2000—2020年1月月平均NDVI小0.15,则以2017年和2019年的均值替代,以此类推。以此方法计算了2013—2017年月平均NDVI,用来辅助完成土地分类。
1.3.3 土地分类数据样本点数据集
林火遥感监测的主要关注对象是天然林区及草地,结合重庆的区域特性,农业用地中的旱地及果园也是林火防范的关注区域,而建筑用地、水体属于林火防范的非关注区域,因此本文将土地类型分为林地、草地、果园、旱地、水田、水体及建筑用地7类。结合高分辨率遥感图像及2015年土地利用数据,对本文7类型土地利用数据取样,样地数见表2。
表2 不同土地类型采集的样区数
Tab.2
土地类型 | 林地 | 果园 | 草地 | 旱地 | 水田 | 建筑用地 | 水体 |
---|---|---|---|---|---|---|---|
样地数/个 | 206 | 272 | 243 | 233 | 295 | 149 | 196 |
1.3.4 其他辅助数据的处理
利用地理信息系数软件,将空间分辨率为12.5 m的数字高程模型(digital elevation model,DEM)数据重采样为50 m,并基于DEM生成了坡度数据。
2 土地覆盖分类
2.1 样点植被指数及地形分析
结合重庆地表破碎的特点,将NDVI数据重采样为50 m分辨率,与DEM及坡度对应。提取样地月平均NDVI、坡度及高程,见图1。
图1
图1
不同土地类型样地NDVI月趋势线及对应坡度/高程值
Fig.1
Monthly NDVI trend lines and slope/height values of different land types
分析发现,各样地NDVI均值较最大、最小值具有区别度,因此采用月平均NDVI作为分类指标,而表征地形的坡度和高程2个要素,在不同地类中也有很明显的分异性,因此也作为分类的重要参数。由图可见,除水体外,各种土地类型的NDVI峰值均出现在7—8月份,9月开始减小,谷值基本出现在1月份,1—8月,NDVI逐渐增加。各土地类型中,林地NDVI最大,其次是草地,水体NDVI最小,建筑用地NDVI次小。在农田中,4—5月份旱地NDVI高于水田,其余月份水田NDVI高于旱田NDVI,果园NDVI月际变化平缓,1—2月份及11—12月份NDVI较旱地、草地NDVI偏大,在6—8月的生长旺季,果园NDVI较其余植被覆盖区NDVI偏低,其余月份NDVI较水田、旱地、草地、林地NDVI低。各类土地类型中,坡度和高程值变化明显,可以结合NDVI进行区分。
2.2 分类方法及结果
2.2.1 人类活动用地与林草地的分离
2.2.2 非植被用地与农用地的分离
水体及建筑用地的NDVI整体偏低,在7—8月份水体和建筑用地的NDVI与植被覆盖区的地表NDVI相差最大,综合考虑日照条件及建筑用地周边、街道绿化生长状况,选取8月份NDVI作为参考指标。分析NDVI可知,在结合前文识别的水体、建筑用地及农业用地区域的基础上,水体NDVI≤0.4或高程≤150 m且坡度≤10°的区域,建筑用地的NDVI在 (0.4,0.6]之间,水体占地1.4%,建筑用地占4.3%,见图2。
图2
2.2.3 水田、旱地、果园的分离
分析样地NDVI发现,果园区域NDVI在6—8月较水田、旱地区域NDVI偏小,但在11—12月份NDVI较水田、旱地偏大,其中7月和12月差异明显,利用这个特点分离农用地中的果园; 水田和旱地的NDVI季节性突出,在6—8月份,水田和旱地的NDVI基本相当,但在4—5月及9—12月,水田NDVI较旱地NDVI明显偏低,利用这个特点,分离出农耕地中的水田; 在8月份旱地NDVI 较水田NDVI偏小,其余月份NDVI较水田偏大,其中10月份偏大最多,利用该特点提取旱地区域,提取结果表明,农用地占重庆土地面积的48.9%,见图3。
图3
2.2.4 草地与林地的分离
分析地形及NDVI发现,草地NDVI在3—4月份及10—12月份较林区NDVI偏小明显,其中4月份和12月份差异较大,分别为0.15和0.13,基于该特点,在2.2.1节提取的林地和草地结果中提取草地(图4(a)),在林地和草地结果中去除草地的其余区域均为林地。在建筑用地、水体及农用地结果中,如果坡度在16°以上且8月NDVI超过0.86或10月NDVI超过0.74的区域,视为耕地边缘林地,因此,林地为这二者的合并区域(图4(b))。林地和草地共占45.7%,见图4。基于重庆地表覆盖类型破碎的特点,重庆林火遥感监测关注的区域除天然林草地外,旱地和果园等经济林地也是林火监测的关注区域,因此将土地分类结果按照林火监测需求分成林火非关注区(包含建筑用地、水体、水田)、林火监测关注区(包括天然林地、草地、旱地和果园),如图4(c)。从图2—4的提取结果看,提取的水体在中心城区范围偏大,包含了部分建筑用地,另外,受数据分辨率的限制,境内的小河流不能全部识别。建筑用地在中心城区、西部较集中,在东北部、东南部山区较稀疏。水田集中在中西部地势低平的区域,旱地除山区、城区外,分散在各区县,与水田、林地、果园等交叉分布; 草地主要分布在东北、东南地势较高的山区,林地在渝东北、渝东南占地较多、分布广,另外在中、西部山地也有零星分布。
图4
图4
草地、林地提取结果及林火关注区分类
Fig.4
Grassland and forestland extraction results and classification of forest fire concern areas
2.3 分类结果检验
表3 单个地类准确度检验结果
Tab.3
分类结果 | 样地类型及各类型所占比例 | ||||||
---|---|---|---|---|---|---|---|
建筑用地 | 水体 | 水田 | 旱地 | 果园 | 草地 | 林地 | |
建筑用地 | 65.90 | 19.18 | 8.93 | 5.36 | 26.45 | 0.00 | 0.18 |
水体 | 26.22 | 76.32 | 0.20 | 0.00 | 0.11 | 0.00 | 0.01 |
水田 | 1.87 | 0.85 | 80.53 | 36.65 | 1.26 | 0.00 | 0.17 |
旱地 | 1.44 | 0.87 | 7.04 | 47.22 | 7.61 | 2.87 | 15.80 |
果园 | 1.22 | 0.30 | 3.06 | 8.55 | 40.61 | 0.28 | 0.59 |
草地 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 64.16 | 3.31 |
林地 | 3.34 | 2.48 | 0.24 | 2.23 | 23.95 | 32.69 | 79.96 |
表4 林火关注区分类准确度检验结果
Tab.4
关注区 | 建筑用地、水 体、水田面积比 | 旱地、果园、草 地、林地面积比 |
---|---|---|
林火非关注区 | 94.59 | 13.99 |
林火关注区 | 5.41 | 86.01 |
从表3和表4可见,建筑用地、水体、水田的分类准确度分别为65.90%,76.32%和80.53%,其中建筑用地误判的34.10%区域中,绝大部分误判为水体,水体误判的23.68%区域中,绝大部分误判为建筑用地,水田误判区域在建筑用地及旱地占比较大,分别为8.93%和7.04%,三者作为林火非关注区,识别的准确度达到94.59%。旱地、果园、草地、林地的识别准确度差异较大,旱地和果园的识别准确度分别为47.22%和40.61%,旱地误差主要误判为水田,占36.65%,果园误差主要误判为建筑用地和林地,分别占26.45%和23.95%,草地和林地的识别准确度分别为64.16%和79.96%,草地误差主要误判为林地,占32.69%,林地误差主要误判为旱地,占15.80%,四者作为林火关注区,识别的准确度达到86.01%。
林火遥感监测时出现的高温干扰热点来源于林火非关注区,结合地表分类信息,对监测高温点进行二次识别,可以剔除林火非关注区的异常高温点,提升林火监测的准确度。本文地表分类的方法对识别林火非关注区的准确度高达94.59%,能够满足林火遥感监测需要。
3 高温热点二次识别分析
3.1 利用林火关注区对监测热点二次识别
将FY3-C/VIRR,FY3-D/MERSI及AQUA/MODIS监测热点与提取的林火关注区分类数据进行叠加,剔除落在林火非关注区的热点,从而提高监测准确度。由热点分布(图5)可见,FY-3监测热点在空间上分布较均匀,MODIS监测热点第一个集中区域在西部、中心城区,第二个集中区在东南部酉阳、秀山,在东部偏北区域及中部相对均匀分布。
图5
图5
FY3-C/VIRR,FY3-D/MERSI及AQUA/MODIS监测高温点分布
Fig 5
High temperature point distribution of FY3-C/VIRR, FY3-D/MERSI and AQUA/MODIS
二次识别后热点分布统计见表5,统计了不同卫星监测热点在2类林火监测分区中的数量及比例。
表5 监测高温点在2类林火关注区内的热点统计
Tab.5
热点种类 | FY3-C/VIRR | FY3-D/MERSI | AQUA/MODIS |
---|---|---|---|
林火非关注区热点占比/% | 26.47 | 11.76 | 46.27 |
林火关注区热点占比/% | 73.53 | 70.59 | 53.73 |
从表5可见,FY3-C/VIRR,FY3-D/MERSI及AQUA/MODIS在林火非关注区的热点分别为26.47%,11.76%和46.27%,其中AQUA/MODIS监测热点剔除比例较高,在林火关注区的热点占53.73%,FY3-C/VIRR和FY3-D/MERSI卫星监测热点在林火关注区的占比较高,达70%以上。
图6给出了进行二次识别后热点分布。从图6可见,经过二次识别后,FY3-C/VIRR和FY3-D/MERSI热点主要分布在渝东北、渝东南及中部山区,在中心城区周边及渝西地区分布较少; AQUA/MODIS监测热点在中心城区及周边减少明显,经过二次识别后,AQUA/MODIS监测热点在各地基本均匀分布,中心城区及西部热点占总数的25.3%,渝东北和渝东南热点分别占26.6%和31.2%。二次识别后,林火关注区内AQUA/MODIS监测热点剩余1 160个,其中判识为林火中-高可信度的热点有1 024个,占判别为林火总数的88.3%; FY3-C/VIRR判识为林火的25个热点中,23个高可信度林火点,占93%; FY3-D/MERSI判识为林火的热点有19个,6个高可信度林火点。
图6
图6
FY3-C/VIRR,FY3-D/MERSI和AQUA/MODIS监测高温点二次识别后分布
Fig.6
Distribution of high temperature points by FY3-C/VIRR, FY3-D/MERSI, AQUA/MODIS after re-identification
3.2 林火关注分区在业务中的验证及应用
2021年5月1—2日,利用TERRA/MODIS和AQUA/MODIS数据与FY3-C/VIRR(FY3-D/MERSI数据出现故障)数据分别进行林火实时监测,TERRA/MODIS和AQUA/MODIS上下午2颗卫星共监测高温热点37个,FY3-C/VIRR共监测高温热点14个,见图7。
图7
图7
2021年5月1—2日TERRA(AQUA)/MODIS,FY3-C/VIRR卫星高温热点监测结果
Fig.7
High temperature spots by TERRA(AQUA)/MODIS, FY3-C/VIRR during May 1—2, 2021
图8
图8
2021年5月1—2日TERRA(AQUA)/MODIS和FY3-C/VIRR卫星高温热点二次识别后结果
Fig.8
High temperature spots of re-identification by TERRA(AQUA)/MODIS and FY3-C/VIRR during May 1—2, 2021
4 结论与展望
NDVI及地形因素对地表分类具有一定的指示意义,将其用于提取复杂地形区域地表分类信息并具有一定的准确度,可将结果应用于特定场景,如用于林火遥感监测的二次识别,可有效降低复杂地形区域林火监测的干扰信息,提升卫星监测林火的准确度,同时降低热点核实人力物力投入。尽管本文在地表分类及林火二次识别的应用场景中已经做了部分研究及示范,仍存在一些问题,主要包括以下几点:
1)提升地表分类遥感数据的空间分辨率。较高分辨率的遥感数据反演的NDVI不仅能够精细地刻画地物NDVI的时间变化特征,也能更好地分辨出地物NDVI的空间差异,有利于区分破碎的地表覆盖,提高地表分类的准确度。
2)增加辅助信息进行地表分类。可增加地物的光谱信息,结合智能识别方法进行分类,会提高分类精度。
3)增加核实数据对二次识别结果进行检验。应用遥感手段进行林火监测需对大量高温热点进行核实,在实施过程中存在监测与管理分离的现象,致使大部分监测热点得不到核实,限制了对监测结果的检验。因此落实核实机制、收集核实结果及真实火情、开展二次识别前后的对比检验等工作,是提升遥感林火监测、检验工作的重要环节。
参考文献
林火监测与预警在森林防灭火中的运用
[J].
Application of forest fire monitoring and early warning in forest fire prevention
[J].
中国林火卫星遥感预警监测技术研究进展
[J].
Forest fire early warning and monitoring techniques using satellite remote sensing in China
[J].
基于MODIS数据的火点监测指数方法研究
[J].
Fire-monitoring method of FPI-NDVI based on MODIS data
[J].
可见光红外成像辐射仪数据林火识别算法研究
[J].
Technology and method of forest fire monitoring using NPP VIIRS data
[J].
基于MODIS数据的林火识别方法研究
[J].
A method to identify forest fire based on MODIS data
[J].
基于亮温-植被指数-气溶胶光学厚度的MODIS火点监测算法研究
[J].
An improved algorithm for forest fire detection:A study based on brightness temperature, vegetation index and AOD
[J].
联合多源遥感数据监测四川木里县森林火灾
[J].
Forest fire monitoring based on multisensor remote sensing techniques in Muli County,Sichuan Province
[J].
Remote sensing of biomass burning in the tropics
[J].DOI:10.1029/JD095iD07p09927 URL [本文引用: 1]
An enhanced contextual fire detection algorithm for MODIS
[J].DOI:10.1016/S0034-4257(03)00184-6 URL [本文引用: 1]
卫星遥感火点监测应用和研究进展
[J].
Application and research progress of fire monitoring using satellite remote sensing
[J].
华北平原秸秆焚烧火点的MODIS影像识别监测
[J].
Monitoring fire from crop residues burning with MODIS data in north China plain
[J].
重庆市森林火灾时空分布特征分析
[J].
Analysis on temporal-spatial feature of forest fires in Chongqing
[J].
局域地形和林火数量对区划方法的影响规律研究
[J].
Research of forest fire zoning based on local topography and fire numbers
[J].
基于地形复杂度的重庆市耕地“宜机化”改造适宜性评价
[J].
Suitability evaluation of suitable-for-mechanization transformation of cultivated land based on topographic complexity in Chongqing,China
[J].
/
〈 |
|
〉 |
