自然资源遥感, 2023, 35(3): 221-229 doi: 10.6046/zrzyyg.2022239

技术应用

Sentinel-3A卫星测高数据监测长江中下游河流水位变化

娄燕寒,1,2,3, 廖静娟,1,2, 陈嘉明1,4

1.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094

2.可持续发展大数据国际研究中心,北京 100094

3.中国科学院大学,北京 100049

4.波恩大学大地测量学和地理信息研究所,波恩 53115,德国

Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data

LOU Yanhan,1,2,3, LIAO Jingjuan,1,2, CHEN Jiaming1,4

1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Institute of Geodesy and Geoinformation, University of Bonn, Bonn 53115, Germany

通讯作者: 廖静娟(1966-),女,研究员,研究方向为微波遥感。Email:liaojj@radi.ac.cn

责任编辑: 陈理

收稿日期: 2022-06-10   修回日期: 2022-09-23  

基金资助: 国家自然科学基金项目“合成孔径干涉雷达高度计数据湖泊水位高精度反演模型研究”(41871256)

Received: 2022-06-10   Revised: 2022-09-23  

作者简介 About authors

娄燕寒(1999-),女,硕士研究生,研究方向为微波遥感(资源与环境)。Email: louyanhan20@mails.ucas.ac.cn

摘要

河流水位是了解水循环和水资源变化状况的重要参数。新型雷达高度计技术是提取河流水位变化的有利工具。为了验证新型雷达高度计Sentinel-3A/SRAL数据监测河流水位的能力,提高其提取河流水位变化的精度,以长江中下游干流为研究对象,利用重心偏移法、阈值主波峰重跟踪算法(阈值取50%和80%)、重心主波形重跟踪算法和多回波波峰一致重跟踪算法对Sentinel-3A/SRAL L2级数据进行波形重跟踪,提取了长江中下游干流各区域2016—2021年间河流水位,并对比不同算法获取水位的精度,得到最优重跟踪算法,从而提取了12条轨道过境区域的水位变化信息,分析了水位变化规律。结果表明,重心偏移法算法是提取河流水位精度最好的重跟踪算法,各区域虚拟水位与实测水位相比具有最大相关系数(达0.968)、最小均方根误差(达0.680 m); 2016—2021年间长江中下游干流水位总体呈上升趋势,年内水位变化呈现明显的季节性。

关键词: Sentinel-3A; 波形分类; 波形重跟踪; 长江; 水位变化

Abstract

River levels serve as a critical parameter for understanding the changes in water cycles and water resources. An advanced Radar altimeter is a favorable tool for extracting the changes in river levels. This study aims to verify the ability of the Sentinel-3A/SRAL Radar altimeter to monitor river levels and improve the extraction accuracy of this Radar altimeter. With the main streams in the middle and lower reaches of the Yangtze River as the study area, this study conducted waveform retracking for the Sentinel-3A/SRAL L2 data using the center-of-gravity offset method, the primary peak threshold retracking algorithm (thresholds: 50% and 80%), the primary waveform centroid retracking algorithm, and the multiple-echo peak consistency retracking algorithm. Then, this study extracted the river levels during 2016—2021 in the study area and obtained the optimal retracking algorithm by comparing the accuracy of different algorithms. Based on the optimal retracking algorithm, this study extracted the water level changes in transit areas of 12 satellite orbits to analyze the water level change patterns. The results show that the center-of-gravity offset method is the optimal retracking algorithm for extracting river levels with the highest accuracy. Compared with the measured water levels, the water levels simulated using the center-of-gravity offset method exhibited the highest correlation coefficient (up to 0.968) and the smallest root mean square error (up to 0.680 m). During 2016—2021, the water levels in the study area generally showed an upward trend, with significant intra-annual seasonal changes.

Keywords: Sentinel-3A; waveform classification; waveform retracking; Yangtze River; water level change

PDF (5019KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229 doi:10.6046/zrzyyg.2022239

LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Land & Resources, 2023, 35(3): 221-229 doi:10.6046/zrzyyg.2022239

0 引言

内陆水系是人类赖以生存的重要淡水资源。河流和水库中的水是全球饮用水、农业灌溉和工业用水的主要来源[1]。监测全球河流、湖泊和水库的水位对于更好地了解气候变化下的水文过程至关重要[2]

卫星雷达测高技术是一种用于确定海洋大地水准面和估算海面地形变化的空间技术[3]。星载雷达测高技术自2010年以来不断创新,在CryoSat-2发射之前,卫星雷达测量都是低分辨率模式(low resolution mode,LRM),CryoSat-2是首个使用合成孔径雷达(synthetic aperture Radar,SAR)模式的测高卫星[1],广泛应用于陆地水体,尤其是湖泊水位年际变化分析。Sentinel-3是首个在全球范围内使用SAR模式和开环跟踪模式的测高卫星[4],与Cryo-Sat-2相比受地形影响更小,数据质量更高,并具有良好的全球覆盖和较高的时空分辨率,因此在监测内陆水体水位方面具有巨大潜力[1]

当雷达高度计监测河流水位时,其足迹同时触及水面和陆地。由于水深较浅和河流周围环境的影响,回波波形噪声较大且常被污染,导致高度计至被测水面的距离不准确[5],因此,需要对波形数据进行重跟踪处理以获取距离改正值,从而提高水位提取的精度[6-11]。目前,针对不同的回波波形已经开发了多种重跟踪算法进行重跟踪处理,算法主要有全波形重跟踪算法和基于子波形重跟踪算法2类。全波形重跟踪算法又称为物理重跟踪算法,包括重心偏移法(off-center of gravity method,OCOG)[12]、阈值法[13]、β参数法[14]和Ice-1算法[15]等,适用于几乎所有雷达高度计数据,对冰面波形(单峰波形)表现出较高的精度[16],适用于回波噪声小且地形平坦的水体,如大型湖泊、宽大河流。基于子波形重跟踪算法又称经验重跟踪算法,包括改进阈值法[17]、狭窄主波峰重跟踪[11]、多回波波峰一致重跟踪(the multiple waveform perstistent peak,MWaPP)[18]和50%阈值法结合Ice-1重跟踪算法(50% threshold and Ice-1 combined,TIC)[19]等,同样适用于几乎所有雷达高度计数据,对复杂多波峰波形表现出较高的精度,多用于处理反射面复杂的内陆水体。

在本研究中,以长江中下游流域为研究区,利用Sentinel-3A/SRAL L2级波形数据开展长江中下游干流的水位提取。为了对比全波形重跟踪算法和子波形重跟踪算法在提取河流水位方面的适用性,本研究选取了全波形重跟踪算法中的OCOG法及子波形重跟踪算法中的主波峰峰值重跟踪算法(narrow primary peak retracker,NPPR)(包括阈值主波峰重跟踪算法(narrow primary peak threshold retracking,NPPTR)(阈值取50%和80%)、重心主波形重跟踪算法(narrow primary peak OCOG retracker,NPPOR)、MWaPP算法5种重跟踪算法进行对比,分别对Sentinel-3A/SRAL L2级波形数据进行波形重跟踪处理,并利用水位站点实测数据进行精度验证,选择5种算法中适用于河流水位提取的最优重跟踪算法,提取长江中下游干流2016—2021年的水位变化信息,从而分析水位变化规律。

1 研究区概况与数据源

1.1 研究区概况

本研究选择长江中下游区域作为研究区,其地理范围为E111°~123°,N27°~34°,干流河道自宜昌至河口全长约1 893 km[20],地跨湖北、湖南、江西、安徽、江苏、浙江和上海等7个省级行政区。长江中下游流域地形平坦,面积约80万km2,以长江为中心的水系发达支流众多,如汉江(1 532 km)、湘江(817 km)、沅江(993 km)以及赣江(758 km)等。长江中下游位于中低纬度地区,属亚热带季风气候,全年温暖湿润,年均气温为14~18 ℃,降水量在1 000~1 500 mm左右。 在本研究中,主要以长江干流为主要研究对象,开展河流水位的提取,研究区概况如图1所示(其中红色字体为轨道编号)。

图1

图1   研究区概况及雷达高度计数据覆盖示意图

Fig.1   Overview of the study area and data coverage of Radar altimeter


1.2 数据源

1.2.1 雷达高度计数据

本研究使用的雷达高度计数据为Sentinel-3A/SRAL L2级波形数据(下载地址: https://scihub.copernicus.eu/dhus/#/home)。Sentinel-3A测高卫星由欧洲空间局(European Space Agency,ESA)于2016年2月16日发射升空,搭载SRAL高度计,轨道高度为814.5 km,采用Ku波段和C波段,空间分辨率为300 m,重访周期为27 d,足迹点直径为2(0.25)km。本文选取该高度计2016—2021年038,089,095,146,152,203,260,266,309,323,360,366这12条过境长江中下游地区的轨道,开展长江干流水位提取。长江干流与过境的高度计形成的水位虚拟站如图1所示,共有12个虚拟水文站点,分别对应12条过境轨道。

1.2.2 辅助数据

本研究获取了长江中下游地区水文站点水位实测数据,用于验证高度计提取河流水位的精度。获取的水位实测数据包括大通、当涂、汉口、湖口、九江、螺山、马家潭、沙市、西河驿及枝城水文站点2016—2021年单天实测水位数据,来源为长江实测水文站点及千里眼水雨情查询系统(http://113.57.190.228:8001/#!/web/Report/RiverReport)。

此外,本研究还获取了中国流域片及长江中下游流域掩模数据(下载地址: https://download.csdn.net)用于提取长江中下游地区干流的边界范围。

2 研究方法

本研究采用的技术流程如图2所示: ①利用中国流域片及长江中下游流域掩模数据提取长江中下游干流边界; ②利用Sentinel-3A轨道数据提取过境轨道落在长江干流上的水位观测点(虚拟水位站); ③针对获取的水位观测点进行目视解译,剔除明显的水位异常波形数据; ④采用OCOG算法、线性判别分析(linear discriminant analysis,LDA)和朴素贝叶斯分类器[21]相结合的方法分别对波形进行分类,去除多波峰波形的噪声; ⑤采用OCOG,NPPOR,NPPTR05,NPPTR08及MWaPP这5种波形重跟踪算法对波形分类后优选的Sentinel-3A波形数据进行重跟踪,辅以大气延迟改正、固体潮改正、极潮改正及大地水准面至椭球体改正以获取沿轨观测水位; ⑥采用高斯柯西混合分布函数对轨道单点噪声进行去噪处理,求解单日沿轨均水位,开展水位提取精度验证,对比分析5种波形重跟踪算法提取水位的精度,优选出最优重跟踪算法; ⑦利用优选出的最优重跟踪算法提取河流水位,构建河流水位变化时间序列,探讨长江中下游河流水位变化趋势,分析水位变化特征。

图2

图2   研究方法流程

Fig.2   Flow chart of the study


2.1 波形分类

当雷达高度计监测水位时,其足迹同时触及水面和陆地。长江中下游受季节因素、周边环境及部分河道较为狭窄等的影响,部分近岸回波波形易受到污染[22-23]。本文获取的高度计回波数据如图3所示,回波波形多以似海洋波形和冰面波形为主,多波峰波形中存在少量噪声波形。因此,需要通过波形优选剔除噪声数据,提取质量较好的观测波形进行后续的波形重跟踪改正,从而得到有效的河流年均水位。

图3

图3   雷达高度计回波波形

Fig.3   Waveform of Radar altimeter


首先,基于统计关系选择K均值聚类法,利用OCOG算法参数(振幅A、宽度W、波形重心位置Gcog)作为特征值对高度计波形数据进行无监督分类,将回波波形分为似海洋波形、冰面波形、多波峰波形,计算公式分别为:

A=i=1+nN-nPi4i=1+nN-nPi2
W=(i=1+nN-nPi2)2i=1+nN-nPi4
Gcog=i=1+nN-niPi2i=1+nN-nPi2

式中: Pi为回波波形功率; N为波门数量; n为波形起始时刻和结束时刻剔除的偏差波形的数量。

并利用前人提出的LDA与朴素贝叶斯分类器相结合的方法针对多波峰波形进行波形优选,去除噪声轨迹。具体过程如下:

1)选择分类特征,包括OCOG算法的基本参数(振幅A、宽度W、波形重心位置Gcog)、峰值度Peakness、归一化回波功率均值Pmean、波形峰度Kurt、波形偏度Skew、左脉冲峰值LTPP、右脉冲峰值ETPP

2)计算投影后的样本集Xp,首先计算类内散度矩阵Sw和类间散度矩阵Sb为:

Sw=xT0(x-μ0)(x-μ0)T+xT1(x-μ1)(x-μ1)T
Sb=(μ0-μ1)(μ0-μ1)T

式中: x=[x(1),x(2),,x(n)]T为选取的样本; μ0μ1分别为T0T1类别样本的均值向量。将SwSb代入式(6)可得LDA的目标函数J 为:

J=wTSbwwTSww=wT(μ0-μ1)(μ0-μ1)TwwTxT0(x-μ0)(x-μ0)T+xT1(x-μ1)(x-μ1)Tw

继而对目标函数J求解最优化问题w*=argmax w (J),即可获得转换向量w=Sw-1(μ0-μ1)。将w带入Xp=wTx得到投影后的新样本集Xp

3)波形分类,根据朴素贝叶斯分类原理,对于待分类波形a={z1,z2,,zm},zi(i=1,2,,m)为分类特征,若P(Tk|a)=max{P(T0|a),P(T1|a)},则aTk,P(T0|a)P(T1|a):

P(Tj|a)=P(a|Tj)P(Tj)P(a)(j=0,1)
P(a|Tj)P(Tj)=P(z1|Tj)P(z2|Tj)P(zm|Tj)=    P(Tj)i=1mP(zi|Tj)

2.2 波形重跟踪

为了获取更加精确的河流水位,必须对分类后的波形进行重跟踪,重新计算波形前缘中点,根据其与原定中点的差值,获得距离改正值,从而对高度计到被测水面的距离进行改正。本文选取2类共5种重跟踪算法进行波形重跟踪处理,具体如下:

1)OCOG算法[12]。其基本思想是找到每个返回波形的重心,通过计算由波形值确定的矩形的重心和面积来确定波形的前缘中点,以此得到距离改正,从而实现对波形的重跟踪[24]

2)MWaPP算法。假设沿轨所有观测点的波形中,高度计至星下点水体的距离值相同,利用线性内插得到1 cm高度间隔的插值波形,取相邻4个内插波形的平均值以削弱陆地噪声信号污染,对每一个平均波形提取主波峰在内的含7个波门的子波形并计算重心偏离振幅,首次超过80%振幅的位置即重跟踪点。

3)NPPR 算法。假设主峰子波形为水面信号反射峰值,利用回波波形的起始阈值和终点阈值提取主波峰。NPPOR采用子波形重心计算方法获取重跟踪点,与 OCOG 算法类似[12]; NPPTR05算法及NPPTR08算法,以OCOG算法为计算基础,根据主波峰子波形的波门数、回波功率等变量给出50%及80%的阈值后去重跟踪点,具体的阈值选取因情况而异[18,25-26]

不同的重跟踪算法获得重定点位置对比如图4所示,可以看出5种重跟踪算法(OCOG,MWaPP,NPPOR,NPPTR05和NPPTR08)均能对Sentinel-3A/SRAL 20 Hz波形数据进行重跟踪处理。当波形中水面前缘存在较大噪声时,OCOG和MWaPP算法的性能会受到较大的影响,反之当波形中水面后缘存在较大噪声时,NPPOR,NPPTR05和NPPTR08算法性能会受到较大影响。

图4

图4   5种重跟踪算法获得的重定点位置对比

Fig.4   Comparison of retracked gates obtained by five retracking algorithms


2.3 卫星测高数据获取河流水位

对Sentinel-3A/SRAL 20 Hz的L2级波形数据用2.2节重跟踪算法获得改正后的观测距离[27],获得沿轨观测水位为:

H=HAlt-R-HGeoid-ΔCor

式中: H沿轨观测水位; HAltSentinel-3A卫星的高度; R重跟踪改正后的观测距离; HGeoid大地水准面高程; ΔCor各误差项修正值。ΔCor主要包含Sentinel-3A测高数据中自带的电离层误差改正、干、湿对流层误差改正、潮汐误差改正、星下点偏离误差改正5部分。

2.4 水位高程基准转换

Sentinel-3A数据运用了WGS84参考系统,而长江中下游水文站点的实测水位数据采用了不同的基准面,如枝城水文站实测水位基于吴淞(扬委)基准面,西河驿水文站实测水位基于黄海水准面等。为进行2种数据的对比分析,在进行水位精度验证时要进行高程系统的转换。为将高度计数据与实测数据变换到同一水平上,要以实测数据为基准,将高度计数据减去两者之间的垂直偏差。然后,计算高度计提取的长江中下游各轨道水位与对应实测水位的相关系数r与均方根误差RMSE,对比不同波形重跟踪方法提取河流水位变化的精度。

3 结果与分析

3.1 提取水位的精度分析

Sentinel-3A/SRAL L2级数据经5种重跟踪算法处理后获得长江中下游地区2016—2021年的干流水位,水位提取结果与实测水位数据的相关性示意图如图5所示(以OCOG算法为例)。

图5

图5   OCOG重跟踪的Sentinel-3A/SRAL 高度计水位与实测水位的相关性

Fig.5   Correlation between Sentinel-3A/SRAL altimeter water level retracked by OCOG and in-situ water level


由于拟合直线斜率及决定系数R2直接反映了高度计数据与实测数据的符合程度,斜率与R2越接近于1,证明2种数据相关性越强。因此,综合考虑高度计12条轨道获取的水位与对应实测水位的拟合情况发现: 095,203及266这3条轨道表现相对一般,具体表现在095轨道与203轨道过境区域2种数据的拟合直线斜率均小于0.8,095轨道与266轨道2种数据的决定系数R2均小于0.70; 其余9条轨道的高度计获取水位与实测水位均表现出较好的相关性,具体表现在各拟合直线斜率介于0.826~1.042之间,各R2介于0.749~0.936之间。其中260轨道表现最好,高度计获取水位与实测水位的拟合直线斜率为0.970,决定系数R2为0.936,展现出较强的相关性。

表1为不同重跟踪算法在不同轨道的水位提取结果与实测数据的具体对比统计数据,包括均方根误差RMSE、相关系数r以及最终提取的有效单天水位个数d。实验结果表明,5种波形重跟踪算法均适用于提取河流水位,且与其他几种重跟踪算法相比,基于全波形的传统OCOG重跟踪算法提取的河流水位效果较好。OCOG算法更适用于提取河流水位具体表现为: 在保证提取的单天水位个数的前提下,12条过境长江中下游干流的Sentinel-3A轨道中有10条轨道(038,089,095,146,152,203,260,266,309,360)水位提取结果的RMSE较小,其中360轨道高度计获取水位与实测水位的RMSE最小,达到0.680 m; 9条轨道(038,146,152,203,260,266,309,360,366)水位提取结果的相关系数r较高,其中260轨道高度计获取水位与实测水位的相关系数r值最大,达到0.968。

表1   不同重跟踪算法得到的Sentinel-3A/SRAL 高度计水位与实测水位比较结果

Tab.1  Comparison of Sentinel-3A/SRAL altimeter water levels obtained by different re-tracking algorithms and in- situ water level

算法指标038089095146152203260266309323360366
MWaPPRMSE/m1.5451.5241.7081.6951.2561.3380.8721.6011.2460.5531.0741.681
r0.8970.9150.6310.8180.9370.6270.9650.6860.9300.9530.9010.864
d545142297045515260575853
NPPORRMSE/m1.4421.4391.6301.6381.2051.3890.8591.4271.2610.7191.1051.475
r0.9240.9020.7070.8820.9440.6620.9650.7690.9290.9370.8860.916
d604335347045475758586051
NPPTR05RMSE/m1.4621.4591.7301.6161.2231.6050.8671.4071.2840.6101.0281.630
r0.9210.8920.6420.8920.9440.5610.9630.7710.9300.9500.8920.873
d604638357349495759585958
NPPTR08RMSE/m1.3331.6671.7141.8441.2021.5720.8641.4761.2550.6761.0481.579
r0.9340.9160.6860.8680.9440.5780.9640.7340.9320.9300.8900.880
d585037386545485559576054
OCOGRMSE/m1.1451.4091.4691.4691.2011.1970.8411.1581.1260.8810.6801.565
r0.9520.8660.6670.8910.9410.8400.9680.8240.9400.8930.9410.891
d614543476345455758586047

新窗口打开| 下载CSV


与MWaPP,NPPOR,NPPTR05和NPPTR08只利用主波峰子波形的重跟踪算法相比,传统的基于全波形的OCOG重跟踪算法在保证单天水位个数的前提下,提取的水位数据相关性更好,RMSE更小,水位精度更高。原因可能是长江中下游干流河面较宽,周围地形平坦,获取的高度计数据多为冰面波形,噪声波形较少质量较高(如图3所示)。且本文经波形分类与波形优选已将高度计数据中的噪声波形剔除。针对数据质量较高的波形数据,利用全波形数据的传统重跟踪算法获得的重定点比利用主波峰子波形数据获得的重定点更为准确,更加靠近实际的波形前缘中点(5种算法重定点位置对比见图4)。因此利用了全波形数据的传统OCOG重跟踪算法提取的河流水位精度更高,与实测水位的相关性更好。

3.2 长江中下游干流水位变化分析

各轨道过境长江中下游干流的虚拟水位站点位置及2016—2021年间最高最低水位情况如表2所示。结果显示各轨道最高最低水位与其虚拟水位站点位置密切相关,大致呈现自西向东依次递减的趋势,且最高水位的递减趋势更为明显; 各轨道过境区域的最高水位基本出现在每年的6—8月,最低水位基本出现在每年的11月—次年4月。

表2   各轨道虚拟水位站点位置及2016—2021年最高最低水位情况

Tab.2  Locations of virtual water level stations of each track and the highest and lowest water levels from 2016 to 2021

轨道编号虚拟水位站点位置最高水位/m最高水位日期最低水位/m最低水位日期
038E114°058',N30°253'28.3602020-06-2813.5302019-11-25
089E113°333',N29°664'33.3502020-06-0518.8112017-11-30
095E114°947',N30°416'26.1752020-06-0519.2102019-08-13
146E114°547',N30°666'28.1902016-07-0913.6002019-12-03
152E116°063',N29°789'21.6592016-07-098.4202019-12-03
203E115°323',N30°078'24.3282020-06-1318.4012016-03-27
260E116°188',N29°827'22.4952020-07-148.3582019-12-11
266E117°654',N30°779'16.1902020-07-144.6202019-12-11
309E112°216',N30°178'42.1112020-07-1730.1982019-11-25
323E118°393',N31°556'12.1402020-07-183.4602019-12-15
360E111°652',N30°353'48.2892020-08-1737.9292018-12-05
366E113°294',N29°626'33.4082020-07-2118.9702019-11-21

新窗口打开| 下载CSV


本文使用OCOG重跟踪算法,对Sentinel-3A/SRAL L2级波形数据进行全波形重跟踪,提取了过境长江中下游干流的12条Sentinel-3A轨道过境区域2016—2021年的河流水位。提取的单天水位结果与实测水位数据进行0均值化处理,相对水位大于0 m的观测点位水位值即1 a中的水位高值,小于0 m的观测点位水位值即1 a中的水位低值。形成的长江中下游干流2016—2021年各区域水位变化时间序列(相对水位)如图6所示。

图6

图6   长江中下游干流2016—2021年水位变化时间序列

Fig.6   Time series of water level changes in the middle and lower reaches of the Yangtze River from 2016 to 2021


结合图56可以看出: ①095,203和266轨道的过境区域2种水位数据的对比情况不太理想,符合3.1节中针对高度计数据与实测数据的相关性分析。原因可能是266轨道过境区域水位数据受周围房屋建筑物影响较大; 095和203轨道这2个区域虚拟水位点与获取实测数据的水文站点距离较远(如图1所示),实际间隔距离大于20 000 m,实测数据无法准确地反映该区域的实际水位状况。②每年的5—10月长江中下游干流各区域水位相对较高,其中6—9月水位上升幅度更为明显,这期间主要为长江中下游地区的汛期,降水量为年降水量的85%。而每年11月—次年4月长江中下游干流各区域水位相对较低,这期间为长江中下游地区的非汛期,降水量很少。③360和309轨道过境区域2016—2021年间的长江干流水位呈现先下降后上升的逐年规律性波动变化,河流水位总体呈现上升趋势; 038,146,203,152,260,089,366,323和266轨道过境区域的长江干流水位在2016—2018年间呈现逐年下降趋势,2018—2020年间呈现逐年上升趋势,2021年水位相较于2020年同期水位偏低,河流水位同样总体呈现上升趋势。

4 结论

星载雷达测高技术在监测内陆水体水位方面潜力巨大,选取合适的雷达高度计数据及波形重跟踪算法可以有效提高获取水位的精度。本研究基于Sentinel-3A/SRAL 20 Hz的L2级高度计数据进行了波形分类及波形重跟踪处理,对比了多种重跟踪算法所得的水位精度,并获取了长江中下游干流2016—2021年的河流水位变化信息。得出如下主要结论:

1)Sentinel-3A/SRAL L2级卫星测高数据可以用于提取河流水位,且波形数据质量较高,对波形数据进行波形分类和波形重跟踪可以有效提高高度计数据提取河流水位的精度。

2)对比基于全波形的OCOG算法与基于子波形的NPPTR05,NPPTR08,NPPOR及MWaPP这5种重跟踪算法,针对长江中下游12条Sentinel-3A轨道的过境区域进行水位提取。传统的OCOG重跟踪算法为最佳算法,与实测水位相比具有最大相关系数、最小均方根误差。

3)2016—2021年长江中下游干流水位总体呈上升趋势,年内水位变化呈现季节性,每年5—10月水位相对较高,为汛期,峰值一般出现在6—8月; 每年11月—次年4月水位相对较低,为非汛期,峰值一般出现在11—12月左右。

对于河宽不同与周边环境不同的河流,回波波形的质量不同,即便是同一种重跟踪算法表现也有所差别,这需要选取不同类型的河流进行对比分析,探讨适合河流水位提取的最优波形重跟踪算法。另外,本研究未考虑不同卫星轨道提取水位的差异,以及实测水位站点与轨道虚拟水位站点的距离对提取水位精度的影响程度,这也是未来需要进一步开展的研究。

参考文献

Gao Q, Makhoul E, Escorihuela M J, et al.

Analysis of retrackers’ performances and water level retrieval over the Ebro River basin using Sentinel-3

[J]. Remote Sensing, 2019, 11(6):718.

DOI:10.3390/rs11060718      URL     [本文引用: 3]

Satellite altimeters have been used to monitor river and reservoir water levels, from which water storage estimates can be derived. Inland water altimetry can, therefore, play an important role in continental water resource management. Traditionally, satellite altimeters were designed to monitor homogeneous surfaces such as oceans or ice sheets, resulting in poor performance over small inland water bodies due to the contribution from land contamination in the returned waveforms. The advent of synthetic aperture radar (SAR) altimetry (with its improved along-track spatial resolution) has enabled the measurement of inland water levels with a better accuracy and an increased spatial resolution. This study aimed to retrieve water levels from Level-1B Sentinel-3 data with focus on the minimization of the land contamination over small- to middle-sized water bodies (130 m to 4.5 km), where continuous clean waveforms rarely exist. Three specialized algorithms or retrackers, together with a new waveform portion selection method, were evaluated to minimize land contamination in the waveforms and to select the nadir return associated with the water body being overflown. The waveform portion selection method, with consideration of the Digital Elevation Model (DEM), was used to fit the multipeak waveforms that arise when overflying the continental water bodies, exploiting a subwaveform-based approach to pick up the one corresponding to the nadir. The performances of the proposed waveform portion selection method with three retrackers, namely, the threshold retracker, Offset Center of Gravity (OCOG) retracker and two-step SAR physical-based retracker, were compared. No significant difference was found in the results of the three retrackers. However, waveform portion selection using DEM information great improved the results. Time series of water levels were retrieved for water bodies in the Ebro River basin (Spain). The results show good agreement with in situ measurements from the Ebro Reservoir (approximately 1.8 km wide) and Ribarroja Reservoir (approximately 400 m wide), with unbiased root-mean-square errors (RMSEs) down to 0.28 m and 0.16 m, respectively, depending on the retracker.

Huang Q, Li X D, Han P F, et al.

Validation and application of water levels derived from Sentinel-3A for the Brahmaputra River

[J]. Science China-Technological Sciences, 2019, 62(10):1760-1772.

DOI:10.1007/s11431-019-9535-3      [本文引用: 1]

Detlef S, Anny C. Satellite altimetry over oceans and land surfaces[M]. Boca Raton: CRC Press, 2017.

[本文引用: 1]

Kittel C M M, Jiang L, Tttrup C, et al.

Sentinel-3 Radar altimetry for river monitoring:A catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B

[J]. Hydrology and Earth System Sciences, 2021, 25(1):333-357.

DOI:10.5194/hess-25-333-2021      URL     [本文引用: 1]

. Sentinel-3 is the first satellite altimetry mission to operate both in synthetic aperture radar (SAR) mode and in open-loop tracking mode nearly globally. Both features are expected to improve the ability of the altimeters to observe inland water bodies. Additionally, the two-satellite constellation offers a unique compromise between spatial and temporal resolution with over 65 000 potential water targets sensed globally. In this study, we evaluate the possibility of extracting river water surface elevation (WSE) at catchment level from Sentinel-3A and Sentinel-3B radar altimetry using Level-1b and Level-2 data from two public platforms: the Copernicus Open Access Hub (SciHub) and Grid Processing on Demand (GPOD). The objectives of the study are to demonstrate that by using publicly available processing platforms, such databases can be created to suit specific study areas for any catchment and with a wide range of applications in hydrology. We select the Zambezi River as a study area. In the Zambezi basin, 156 virtual stations (VSs) contain useful WSE information in both datasets. The root-mean-square deviation (RMSD) is between 2.9 and 31.3 cm at six VSs, where in situ data are available, and all VSs reflect the observed WSE climatology throughout the basin. Some VSs are exclusive to either the SciHub or GPOD datasets, highlighting the value of considering multiple processing options beyond global altimetry-based WSE databases. In particular, we show that the processing options available on GPOD affect the number of useful VSs; specifically, extending the size of the receiving window considerably improved data at 13 Sentinel-3 VSs. This was largely related to the implementation of GPOD parameters. While correct on-board elevation information is crucial, the postprocessing options must be adapted to handle the steep changes in the receiving window position. Finally, we extract Sentinel-3 observations over key wetlands in the Zambezi basin. We show that clear seasonal patterns are captured in the Sentinel-3 WSE, reflecting flooding events in the floodplains. These results highlight the benefit of the high spatiotemporal resolution of the dual-satellite constellation.\n

赵云, 廖静娟, 沈国状, .

卫星测高数据监测青海湖水位变化

[J]. 遥感学报, 2017, 21(4):633-644.

[本文引用: 1]

Zhao Y, Liao J J, Shen G Z, et al.

Monitoring the water level changes in Qinghai Lake with satellitealtimetry data

[J]. Journal of Remote Sensing, 2017, 21(4):633-644.

[本文引用: 1]

Hwang C, Guo J Y, Deng X L, et al.

Coastal gravity anomalies from retracked geosat/GM altimetry:Improvement,limitation and the role of airborne gravity data

[J]. Journal of Geodesy, 2006, 80(4):204-216.

DOI:10.1007/s00190-006-0052-x      URL     [本文引用: 1]

Bao L F, Lu Y, Wang Y.

Improved retracking algorithm for oceanic altimeter waveforms

[J]. Progress in Natural Science, 2009, 19(2):195-203.

DOI:10.1016/j.pnsc.2008.06.017      URL     [本文引用: 1]

Yang L, Lin M S, Liu Q H, et al.

A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction

[J]. International Journal of Remote Sensing, 2012, 33(24):7806-7819.

DOI:10.1080/01431161.2012.701350      URL     [本文引用: 1]

Kleinherenbrink M, Ditmar P G, Lindenbergh R C.

Retracking Cryo-sat data in the SARIn mode and robust lake level extraction

[J]. Remote Sensing of Environment, 2014, 152:38-50.

DOI:10.1016/j.rse.2014.05.014      URL     [本文引用: 1]

Kleinherenbrink M, Lindenbergh R C, Ditmar P G.

Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking CryoSat SARIn waveforms

[J]. Journal of Hydrology, 2015, 521:119-131.

DOI:10.1016/j.jhydrol.2014.11.063      URL     [本文引用: 1]

Jain M, Andersen O B, Dall J, et al.

Sea surface height determination in the Arctic using CryoSat-2 SAR data from primary peak empirical retrackers

[J]. Advances in Space Research, 2015, 55(1):40-50.

DOI:10.1016/j.asr.2014.09.006      URL     [本文引用: 2]

Wingham D J, Rapley C G, Griffiths H.

New techniques in satellite altimeter tracking systems

[C]// Proceedings of IGARSS.IEEE, 1986, 86:1339-1344.

[本文引用: 3]

Davis C H.

Growth of the Greenland ice sheet:A performance assessment of altimeter retracking algorithms

[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5):1108-1116.

DOI:10.1109/36.469474      URL     [本文引用: 1]

Martin T V, Zwally H J, Brenner A C, et al.

Analysis and retracking of continental ice sheet Radar altimeter waveforms

[J]. Journal of Geophysical Research Oceans, 1983, 88(c3):1608-1616.

[本文引用: 1]

Biswas N K, Hossain F, Bonnema M, et al.

An altimeter height extraction technique for dynamically changing rivers of South and South-East Asia

[J]. Remote Sensing of Environment, 2019, 221:24-37.

DOI:10.1016/j.rse.2018.10.033      URL     [本文引用: 1]

刘琪, 李琼, 魏加华, .

星载高度计水位提取方法研究进展

[J]. 南水北调与水利科技, 2021, 19(2):281-292.

[本文引用: 1]

Liu Q, Li Q, Wei J H, et al.

Research progress of water level extraction methods based on satellite altimeter

[J]. South-to-North Transfer and Water Science and Technology, 2021, 19(2) :281-292.

[本文引用: 1]

Lee H, Shum C K, Yi Y, et al.

Laurentia crustal motion observed using TOPEX/POSEIDON Radar altimetry over land

[J]. Journal of Geodynamics, 2008, 46(3-5):182-193.

DOI:10.1016/j.jog.2008.05.001      URL     [本文引用: 1]

Villadsen H, Deng X, Andersen O B, et al.

Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

[J]. Journal of Hydrology, 2016, 537:234-247.

DOI:10.1016/j.jhydrol.2016.03.051      URL     [本文引用: 2]

Huang Q, Long D, Du M, et al.

An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data

[J]. Remote Sensing of Environment, 2018, 211:112-28.

DOI:10.1016/j.rse.2018.04.018      URL     [本文引用: 1]

许全喜, 董炳江, 张为.

2020年长江中下游干流河道冲淤变化特点及分析

[J]. 人民长江, 2021, 52(12):1-8.

[本文引用: 1]

Xu Q X, Dong B J, Zhang W.

Characteristics and analysis of erosion and deposition changes in the middle and lower reaches of the Yangtze River in 2020

[J]. People’s Yangtze River, 2021, 52(12):1-8.

[本文引用: 1]

廖静娟, 薛辉, 陈嘉明.

卫星测高数据监测青藏高原湖泊2010年—2018年水位变化

[J]. 遥感学报, 2020, 24(12):1534-1547.

[本文引用: 1]

Liao J J, Xue H, Chen J M.

Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data

[J]. Journal of Remote Sensing, 2020, 24(12):1534-1547.

[本文引用: 1]

Ayana E K. Validation of Radar altimetry lake level data and it’s application in water resource management[D]. The Netherlands: International Institute for Geo-Information Science and Earth Observation (ITC), 2007.

[本文引用: 1]

Arabsahebi R, Voosoghi B, Tourian M J.

The inflection-point retracking algorithm:Improved Jason-2 sea surface heights in the Strait of Hormuz

[J]. Marine Geodesy, 2018, 41(4):331-352.

DOI:10.1080/01490419.2018.1448029      URL     [本文引用: 1]

褚永海, 李建成, 张燕, .

ENVISAT测高数据波形重跟踪分析研究

[J]. 大地测量与地球动力学, 2005, 25(1):76-80.

[本文引用: 1]

Chu Y H, Li J C, Zhang Y, et al.

Research on waveform re-tracking analysis of ENVISAT altimetry data

[J]. Geodesy and Geodynamics, 2005, 25(1):76-80.

[本文引用: 1]

Jiang L, Nielsen K, Andersen O B, et al.

CryoSat-2 Radar altimetry for monitoring freshwater resources of China

[J]. Remote Sensing of Environment, 2017, 200:125-139.

DOI:10.1016/j.rse.2017.08.015      URL     [本文引用: 1]

Xue H, Liao J, Zhao L.

A modified empirical retracker for lake level estimation using CryoSat-2 SAR in data

[J]. Water, 2018, 10(11):1584.

DOI:10.3390/w10111584      URL     [本文引用: 1]

Satellite radar altimetry is an important technology for monitoring water levels, but issues related to waveform contamination restrict its use for rivers, narrow reservoirs, and small lakes. In this study, a novel and improved empirical retracker (ImpMWaPP) is presented that can derive stable inland lake levels from Cryosat-2 synthetic aperture radar interferometer (SARin) waveforms. The retracker can extract a robust reference level for each track to handle multi-peak waveforms. To validate the lake levels derived by ImpMWaPP, the in situ gauge data of seven lakes in the Tibetan Plateau are used. Additionally, five existing retrackers are compared to evaluate the performance of the proposed ImpMWaPP retracker. The results reveal that ImpMWaPP can efficiently process the multi-peak waveforms of the Cryosat-2 SARin mode. The root-mean-squared errors (RMSEs) obtained by ImpMWaPP for Qinghai Lake, Nam Co, Zhari Namco, Ngoring Lake, Longyangxia Reservoir, Bamco, and Dawa Co are 0.085 m, 0.093 m, 0.109 m, 0.159 m, 0.573 m, 0.087 m, and 0.122 m, respectively. ImpMWaPP obtains the lowest mean RMSE (0.175 m) over the seven lakes, indicating that it extracts lake levels well during icing and no-ice periods, and is more suitable for lakes frozen in winter.

莫德丽, 赵银军, 陈国清, .

基于主波峰的自适应波形重跟踪算法研究

[J]. 大地测量与地球动力学, 2021, 41(10):1051-1056.

[本文引用: 1]

Mo D L, Zhao Y J, Chen G Q, et al.

Research on adaptive waveform re-tracking algorithm based on main wave crest

[J]. Geodesy and Geodynamics, 2021, 41(10):1051-1056.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发