联合光学和SAR遥感影像的山区公路滑坡易发性评价方法
Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images
通讯作者: 徐乔(1991-),男,硕士研究生,工程师,主要从事公路遥感地质灾害监测研究。Email:xu_qiao_cug@126.com。
责任编辑: 李瑜
收稿日期: 2022-08-10 修回日期: 2023-03-22
基金资助: |
|
Received: 2022-08-10 Revised: 2023-03-22
作者简介 About authors
余绍淮(1979-),男,本科,正高级工程师,主要从事3S技术与公路CAD的集成研究。Email:
艰险山区公路的滑坡易发性评价能够为公路地质选线提供关键支撑信息。传统滑坡易发性评价方法存在忽略地表形变等动态数据的使用而导致评价结果精度不高的问题。针对此问题,该文提出一种联合光学和SAR遥感影像的山区公路滑坡易发性评价方法。以青海省沿黄公路隆务峡至公伯峡段为研究区,先利用高分辨率QuickBird卫星影像提取多种滑坡灾害静态因子,并采用随机森林模型计算路线区域内的滑坡易发性风险初始等级; 然后基于长时间序列的Sentinel-1A影像,获取直接反映滑坡动态变化的地表形变因子; 最后,利用地表形变因子对滑坡易发性风险初始等级进行修正,得到最终的滑坡易发性评价分区图。工程实践表明,该方法综合利用滑坡灾害静态与动态因子数据,所获取的山区公路滑坡易发性评价分区图更具准确性,可为后续的公路地质选线提供准确信息。
关键词:
Assessing the landslide susceptibility of highways in precarious mountainous areas can provide crucial information for the geologic route selection of highways. Conventional landslide susceptibility assessment methods ignore the application of surface deformation data and other dynamic data, leading to low-accuracy assessment results. Hence, this study proposed a landslide susceptibility assessment method for mountain highways based on optical and SAR remote sensing images. With the Longwuxia-Gongboxia section of the Yanhuang Highway in Qinghai Province as the study area, this study extracted various static factors of landslides from high-resolution QuickBird satellite images and calculated the initial risk level of landslide susceptibility within the route area using a random forest model. Afterward, this study obtained the surface deformation factors, which directly reflect the dynamic changes of landslides, based on the long-time-series Sentinel-1A images. Finally, this study corrected the initial landslide susceptibility risk level based on the surface deformation factors, generating a landslide susceptibility assessment zoning map. As demonstrated by engineering practice, the method proposed in this study yielded a high-accuracy landslide susceptibility assessment zoning map for the mountain highway by combining data on both static and dynamic factors of landslides, thus providing accurate information for subsequent geologic route selection of the highway.
Keywords:
本文引用格式
余绍淮, 徐乔, 余飞.
YU Shaohuai, XU Qiao, YU Fei.
0 引言
滑坡灾害易发性评价是对滑坡灾害的时空分布和发生概率进行预测,可为滑坡灾害风险管理提供重要的决策依据。当前应用较多的易发性评价方法有2大类: 第一类是基于知识驱动的评价方法,如层次分析法[5]、专家打分法[6]等经验模型; 第二类是基于数据驱动的评价方法,包括逻辑回归[7]、信息量法[8]、确定系数法[9]等统计分析模型,及人工神经网络[10]、支持向量机[11]、随机森林[12]等机器学习模型。与经验模型和统计分析模型相比,基于数据驱动的机器学习方法能更好地分析评价因子和滑坡之间的非线性关系。随着对地观测技术的飞速发展,地表观测数据越来越丰富,基于数据驱动的机器学习模型已广泛应用到滑坡灾害易发性评价模型中[13-14]。
为此,针对上述不足,本文在综合利用光学和SAR遥感影像基础上,提出一种结合地表形变速率的滑坡易发性评价方法,该方法先利用光学遥感影像和地形数据提取多种滑坡灾害静态因子; 然后利用随机森林(rondom forest, RF)模型计算滑坡易发性风险初始等级; 最后利用长时间序列SAR影像计算的地表形变速率对易发性风险初始等级进行修正,从而得到更加准确可靠的滑坡易发性评价分区图,为后续山区公路地质选线提供数据支撑。
1 基于多源遥感数据的滑坡易发性评价模型构建
1.1 滑坡易发性评价因子提取
滑坡灾害的发育是一个复杂的非线性过程,受多种因素综合影响,包括地形地貌、地质构造、地层岩性、岩体结构及地下水等内在地质因素,也有降雨、人工开挖、地震等外在诱发因素; 因此,充分提取滑坡孕灾环境信息对滑坡灾害易发性评价至关重要。为快速准确建立路线区域的滑坡易发性评价模型,利用高分遥感影像及DEM数据提取多种滑坡灾害因子; 其中,基于高分遥感影像的滑坡灾害因子提取主要是通过对区域地质、地形地貌及生态景观环境信息进行遥感解译识别,提取因子包括地层岩性、地质构造、地形地貌等; 基于DEM数据的因子提取主要是通过GIS分析获取,主要有坡度、坡向、坡长、水流流向、水流累积量等。
本文所用的滑坡易发性评价因子如表1所示。由于DEM数据和遥感影像的分辨率不同,致使基于二者所提取的滑坡灾害因子尺度不同,考虑到可免费获取的DEM数据的分辨率为30 m×30 m,本方法采用30 m×30 m的栅格单元作为滑坡易发性评价单元,并在此基础上提取滑坡灾害因子。
表1 滑坡易发性评价因子表
Tab.1
评价因素 | 评价指标 | 指标来源 |
---|---|---|
地质条件 | 与构造线的距离 | 利用高分遥感影像解译的地质构造线,利用GIS分析计算得到 |
水文条件 | 与沟谷的距离 | 利用DEM数据进行汇水分析,提取研究区内的沟谷线,然后计算与沟谷的距离 |
湿度指数 | 依据DEM数据,利用GIS分析软件SAGA计算得到 | |
地形地貌 | 高程 | 直接利用DEM数据 |
坡度 | 依据DEM数据,利用GIS分析软件SAGA计算得到 | |
坡向 | ||
坡长 | ||
坡高 | ||
斜坡类型 | ||
地表覆盖 | NDVI | 依据高分遥感影像,利用遥感处理软件ENVI计算各植被指数 |
SRI | ||
ARVI | ||
EVI | ||
土地利用 | 对高分遥感影像进行分类 |
1.2 基于随机森林的滑坡易发性风险等级划分
随机森林的基本原理是先利用Bagging重抽样方法从原始样本中抽取多个样本集; 然后对样本集构建多个分类回归树(classification and regression tree,CART),其中每个CART树的内部节点分裂时,对特征集进行一次随机抽样,并在抽取的特征集中进行最优选择; 最后,利用所有CART树的计算结果,通过均值或投票得出最终计算结果。随机森林模型的构建过程见图1。
图1
由图1可知,随机森林模型中引入了样本随机抽样及特征随机抽样,有效降低模型对样本噪声和异常值的敏感度,提高评价模型的准确率和稳定性。为此,本文基于滑坡灾害因子集,利用滑坡样本与非滑坡样本,训练基于随机森林的滑坡易发性评价模型,完成滑坡易发性风险初始等级的划分,主要包括以下步骤:
1)从N个原始滑坡训练样本中以有放回的方式重复取样N次,得到一个训练样本集; 重复上述过程k次,得到k个训练样本集;
2)针对每一个训练样本集,通过随机选取滑坡评价因子集作为分裂特征集,并选择最优的分裂方式进行内部节点的迭代分裂,且分裂过程中不做减枝处理,迭代完成后得到k棵CART树;
3)将生成的k棵CART树组合成随机森林,对输入的滑坡评价因子集进行分类预测,统计每棵CART树的分类结果,计算出滑坡易发性概率;
4)依据得到的滑坡易发性概率,利用自然断点法进行分级处理; 将研究区域划分低易发区、中易发区、高易发区和极高易发区4个等级,完成滑坡易发性风险初始等级的划分。
1.3 结合形变特征的滑坡易发性风险等级修正
上述滑坡易发性风险初始等级的划分是基于地面相关静态参数如高程、坡度、坡向等计算得到,而地表形变速率反映了地表动态变形,可直接反映滑坡的运动状态; 因此利用地表形变速率对滑坡易发性风险初始等级进行修正,可提高结果的准确性。为此,本文利用长时间序列SAR影像得到地表形变速率对易发性风险初始等级进行修正,从而得到更加准确有效的滑坡易发性评价分区图。
图2
考虑到SABS-InSAR技术只能探测沿雷达视线方向的形变信息,而滑坡多沿斜坡面进行滑动,本文利用SAR成像信息及DEM数据,将上一步获取的形变速率转化为沿坡度方向的形变速率,以反映斜坡面的地表形变信息。斜坡面的形变速率
式中:
式中:
SBAS-InSAR技术获取的坡向形变速率反映了区域坡面的动态变形状态,将坡面形变速率加入到滑坡易发性评价中,可提高模型的敏感度与准确性。为此,按照评价单元大小,将所提取的坡面形变速率图重采样至30 m×30 m,并依据评价单元所对应的形变速率大小,将评价单元划分为低形变区([0,15) mm/a)、中等形变区([15,30) mm/a)、高形变区([30,45) mm/a)及极高形变区(≥45 mm/a)4类; 然后,将滑坡易发性风险等级与形变等级关联,建立风险等级更新矩阵,实现对滑坡易发性风险初始等级的修正,得到最终的滑坡易发性评价分区图。滑坡易发性风险等级更新矩阵如表2所示。
表2 滑坡易发性风险等级更新表
Tab.2
滑坡易发 性风险初 始等级 | 形变等级 | |||
---|---|---|---|---|
低形变区 | 中等形变区 | 高形变区 | 极高形变区 | |
低易发区 | 0 | +1 | +2 | +3 |
中易发区 | 0 | 0 | +1 | +2 |
高易发区 | 0 | 0 | 0 | +1 |
极高易发区 | 0 | 0 | 0 | 0 |
2 工程实践与分析
2.1 研究区概况
青海省沿黄公路共和至大河家段公路地处青藏高原东北缘,青海省东南部,起点位于青海省共和县,终点位于甘肃省积石山县,是青海省第一条沿黄河公路; 建设高质量的沿黄河公路,对于开发黄河上游水能资源,促进黄河谷地开发利用,完善公路网建设,适应地区经济快速发展的交通需求,具有十分重要的现实意义和社会意义。
工程地处青海省拉脊山断裂南侧,受拉脊山断裂带的控制作用,并随着青藏高原的急剧抬升和黄河不断下切,导致路线经过的龙羊峡至拉西瓦、李家峡库区、隆务峡至公伯峡等黄河峡谷段两岸地势陡峭,深切河谷发育,地形地貌复杂多样,泥石流、滑坡、崩塌等不良地质现象发育。为此,本文选取选择隆务峡至公伯峡段进行工程实践,以验证本文提出的联合光学和SAR遥感影像的山区公路滑坡易发性评价方法的准确性和有效性。研究区的范围与地形如图3所示。
图3
图3
研究区范围与地形示意图
Fig.3
Schematic diagram of the scope and topography of the study area
2.2 实验数据及处理
为准确评价研究区的滑坡易发性风险等级,选择QuickBird卫星影像、Sentinel-1A卫星影像及ASTER GDEM数据作为评价模型的基础数据。其中,QuickBird卫星影像用于提取滑坡易发性评价因子与历史滑坡区的解译,其分辨率为全色0.61 m,多光谱2.44 m。考虑到研究区内的地形起伏较大,先对QuickBird影像进行几何纠正与空间配准,以消除影像上存在的几何畸变; 然后对QuickBird卫星的多光谱与全色波段进行融合处理,以提高QuickBird影像的空间分辨率的同时保留其多光谱特性。在此基础上,利用处理后QuickBird影像提取出植被指数、地表覆盖等多种评价因子; 然后对QuickBird影像进行滑坡遥感解译,以得到研究区的历史滑坡区,并在此基础上选择训练样本。图4为研究区的历史滑坡遥感解译图。
图4
图4
研究区历史滑坡遥感解译图
Fig.4
Remote sensing interpretation map of historical landslides in the study area
Sentinel-1A卫星影像用于提取研究区内的坡面形变速率,作为后续滑坡易发性风险初始等级调整的依据。实验选择覆盖研究区范围的37景2018年1月—2020年6月的Sentinel-1A升轨影像,影像的成像方式为干涉宽幅模式,选用VV极化方式的影像进行干涉处理,并利用精密轨道文件进行轨道误差校正,所用Sentinel-1A的影像信息如表3所示。
表3 Sentinel-1A 影像信息表
Tab.3
编号 | 影像日期 | 入射角/(°) | 编号 | 影像日期 | 入射角/(°) | 编号 | 影像日期 | 入射角/(°) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2018-01-14 | 39.483 | 14 | 2018-11-22 | 39.485 | 27 | 2019-09-30 | 39.489 | ||
2 | 2018-02-07 | 39.484 | 15 | 2018-12-16 | 39.483 | 28 | 2019-10-24 | 39.486 | ||
3 | 2018-03-03 | 39.485 | 16 | 2019-01-09 | 39.485 | 29 | 2019-11-17 | 39.485 | ||
4 | 2018-03-27 | 39.486 | 17 | 2019-02-02 | 39.484 | 30 | 2019-12-23 | 39.483 | ||
5 | 2018-04-20 | 39.490 | 18 | 2019-02-26 | 39.484 | 31 | 2020-01-16 | 39.483 | ||
6 | 2018-05-14 | 39.490 | 19 | 2019-03-22 | 39.485 | 32 | 2020-02-09 | 39.485 | ||
7 | 2018-06-07 | 39.490 | 20 | 2019-04-15 | 39.491 | 33 | 2020-03-04 | 39.485 | ||
8 | 2018-07-01 | 39.491 | 21 | 2019-05-09 | 39.490 | 34 | 2020-03-28 | 39.486 | ||
9 | 2018-07-25 | 39.490 | 22 | 2019-06-02 | 39.490 | 35 | 2020-04-21 | 39.490 | ||
10 | 2018-08-18 | 39.490 | 23 | 2019-06-26 | 39.491 | 36 | 2020-05-15 | 39.490 | ||
11 | 2018-09-11 | 39.489 | 24 | 2019-07-20 | 39.491 | 37 | 2020-06-08 | 39.491 | ||
12 | 2018-10-05 | 39.489 | 25 | 2019-08-13 | 39.491 | 方位向分辨率: 13.91 m | ||||
13 | 2018-10-29 | 39.486 | 26 | 2019-09-06 | 39.490 | 距离向分辨率: 2.33 m |
本文利用ENVI 5.3中的SARScape模块,对上述Sentinel-1A影像进行裁剪、配准、干涉、去平、滤波、解缠及地理编码等列干涉处理; 其中,所选择的超级主影像日期为2018-05-14,所设置的时间基线阈值与最大空间基线阈值分别为120 d与5%,所利用的干涉相对数目为165,平均绝对时间基线与绝对空间基线分别为70 d与53.88 m; 在此基础上,利用SBAS-InSAR方法得到研究区沿雷达视线方向的形变速率,结果如图5所示。
图5
图5
研究区2018—2020年沿雷达视线方向形变速率分布图
Fig.5
Distribution map of deformation rate along the radar line of sight in the study area from 2018 to 2020
另外,考虑到斜坡体的形变应沿着斜坡面向下运动,只有形变速率为负值的形变点才能反应斜坡体的实际形变状态,故剔除形变速率为正值的形变点,从而得到研究区沿斜坡面的形变速率分布图,结果如图6所示。
图6
图6
研究区2018—2020年沿斜坡面方向形变速率分布图
Fig.6
Distribution map of deformation rate along the slope in the study area from 2018 to 2020
2.3 结果分析与讨论
利用基于高分辨率QuickBird影像解译的历史滑坡区域,从中选取257个样本点作为训练样本,并从影像其他区域随机选择非滑坡点,二者比例保持1∶1,提取出各样本点的评价因子数据作为随机森林模型的训练样本。本文利用随机森林算法得到的研究区滑坡易发性初始评价分区图如图7所示。
图7
图7
研究区滑坡易发性初始评价分区图
Fig.7
Landslide susceptibility initial assessment zoning map in the study area
对比图6与图7可知,部分形变速率较大的区域被划分为低易发区,而长时间存在形变的区域往往发生滑坡的风险较高,因此仅考虑高程、坡度、坡向等地面静态因子对研究区的滑坡易发性进行评价,会导致评价结果的可靠性不高,与区域实际情况存在较大差异。为此,本文利用图6所示的斜坡面方向的形变速率对图7的滑坡易发性风险初始等级进行修正,得到最终的滑坡易发性评价分区图,结果如图8所示。经统计,图8所示的滑坡易发性评价分区图中,极高易发区、高易发区、中易发区及低易发区的面积占比分别为7.73%,13.67%,20.34%和58.26%,其中高易发区及极高易发区占比超过20%,表明研究区内大片区域受到滑坡的潜在威胁。通过前文解译的历史滑坡区可知,大部分滑坡区位于黄河峡谷及黄河两岸,与图7所示的高易发区、极高易发区的分布基本一致。此外,选取部分重点区域,将形变速率图、初始评价分区图与最终的评价分区图进行对比分析,以验证本文方法的有效性,对比图见图9。
图8
图8
研究区滑坡易发性评价分区图
Fig.8
Landslide susceptibility evaluation zoning map in the study area
图9
图9
局部重点区域滑坡易发性风险等级对比分析图
Fig.9
Comparative analysis chart of landslide susceptibility risk levels in local key areas
表4 滑坡易发性评价精度统计表
Tab.4
类型 | 易发性等级 | 分级面积/km2 | 分级面积 占比/% | 滑坡样本分 级面积/km2 | 滑坡样本面积 分级占比/% | 频率比 |
---|---|---|---|---|---|---|
初始易发性分级 | 低易发区 | 34.806 4 | 60.65 | 0.967 2 | 45.43 | 0.749 1 |
中易发区 | 11.143 8 | 19.42 | 0.372 8 | 17.51 | 0.901 6 | |
高易发区 | 7.427 7 | 12.94 | 0.323 0 | 15.18 | 1.173 1 | |
极高易发区 | 4.009 6 | 6.99 | 0.465 7 | 21.88 | 3.130 2 | |
结合形变特征的易发性分级 | 低易发区 | 33.435 2 | 58.26 | 0.689 2 | 32.37 | 0.555 6 |
中易发区 | 11.673 4 | 20.34 | 0.396 3 | 18.62 | 0.915 4 | |
高易发区 | 7.846 2 | 13.67 | 0.474 2 | 22.28 | 1.629 8 | |
极高易发区 | 4.432 7 | 7.73 | 0.569 0 | 26.73 | 3.458 0 |
由表4可知,上述2种方式所得到的滑坡易发性评价分区图中,高易发区与极高易发区的分级面积占比均不超过研究区总面积的22%,但却分布有 37%以上的滑坡样本,远超过其他易发区等级,且频率比值从低易发区到极高易发区均显著增大,极高易发区频率比值也远大于其他易发性等级,表明上述2种方式能有效地评价研究区的滑坡易发性。
利用形变特征对滑坡易发性初始评级结果进行修正后,有26.73%的滑坡样本分布于极高易发区,22.28%的滑坡样本分布于高易发区,均高于初始分级图中的21.88%与15.18%,改正后分区图中的极高易发区的面积占比从6.99%提高到7.73%,频率比值从3.130 2提高到3.458 0,精度提升明显,表明增加利用地表形变特征可显著提高评价结果的准确性,尤其是具有较高风险等级的区域。修正后的分区图中低易发区的滑坡样本比例也显著降低,频率比值从0.749 1降低到0.555 6,但仍有32.37%的滑坡样本区域位于低风险区,这主要是由于使用的DEM数据精度与分辨率不高及滑坡样本点包含部分处于稳定状态的古滑坡所造成。总的来说,本方法得到的滑坡易发性评价分区图与研究区实际情况基本一致,验证了本文联合光学和SAR遥感影像对山区公路走廊进行滑坡易发性评价的有效性。
3 结论与展望
本文采用联合光学和SAR遥感影像进行山区公路滑坡易发性评价的方法,准确提取了多种静态与动态滑坡灾害因子; 基于随机森林算法综合利用地质、水文、地形地貌及地表覆盖等多种因子,实现了滑坡易发性风险初始等级的快速评估; 利用SABS-InSAR技术获取的地表形变因子,对滑坡易发性风险初始等级进行精准修正,并有效开展艰险山区公路走廊范围内的滑坡易发性评价工作。通过在青海省沿黄公路隆务峡至公伯峡段中的应用实践,表明本文方法可快速准确地得到山区公路走廊范围内的滑坡危险性评价分区图,适用于山区公路遥感地质勘察,可为后续公路地质选线提供数据参考。
但是,本文提出的滑坡易发性评价方法仍存在以下不足: ①滑坡样本需人工选择,影响工作效率与评价精度; ②采用的DEM数据精度与分辨率有限,降低了滑坡易发性评价分区图的准确性。因此,下一步工作应改进滑坡易发性评价算法,减少人工干预,采用高精度的DEM数据,提高滑坡易发性评价工作的效率与准确性。
参考文献
基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划
[J].
Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor eValuation
[J].
孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别
[J].
DOI:10.11947/j.AGCS.2022.20220306
[本文引用: 1]
隐患识别是实现地质灾害从注重灾后救助向注重灾前预防转变的重要技术工作。本文以三峡库首秭归沙镇溪镇周边岸坡段顺层岩质滑坡隐患识别为基础,提出基于孕灾机理与综合遥感相结合的地质灾害隐患识别方法。首先,借助资料整理分析、遥感调查和现场调查等查明孕灾环境,并建立孕灾指标体系;其次,针对典型灾害体开展地质结构与致灾机理分析,以揭示典型孕灾模式,并建立综合遥感判识标志;再次,采用易发性分区评价,结合高分光学卫星遥感与InSAR等天基遥感变化检测技术,圈定隐患识别的易发重点靶区;然后,针对高易发靶区,利用无人机摄影测量、LiDAR等空基遥感技术识别疑似隐患体;最后,通过地面核查与专家判识,确认并圈定地质灾害隐患。利用该套技术方法,在工作区内共识别出8处地质灾害隐患,其中5处为具备孕灾模式但尚未出现明显变形的顺层岩质滑坡隐患体。结果表明,该套技术方法以查明孕灾环境及建立孕灾模式为核心与前提、以综合遥感探测为重要技术支撑,可以弥补目前主要依赖遥感变化探测开展隐患识别易造成精度较低甚至失效的缺陷,尤其适合于山高坡陡、植被覆盖茂密地区的隐蔽性、突发性地质灾害的隐患识别。
The bedding rock landslide identification in the head area of the Three Gorges Reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method
[J].
DOI:10.11947/j.AGCS.2022.20220306
[本文引用: 1]
The identification of hidden dangers is an important technical work to realize the transformation of potential geological hazards from post-disaster relief to pre-disaster prevention.This paper proposes a method for identifying the bedding rock landslide based on disaster pregnant mechanism and comprehensive remote sensing detection technology. Firstly, data analysis, remote sensing survey and field survey is used for identifying disaster-pregnant environment and establishing a disaster-pregnant index system; at the same time, typical hazard mode and the identification mark of integrated remote sensing are established. Then, key target areas and suspected hidden dangers of geological disasters are delineated. And geological hazard identification is realized relied on ground detailed assessments and professional identification. By using this set of technical methods, a total of 8 potential catastrophic geohazards have been identified in the work area, of which 5 are potential rockslides with hazard-pregnancy modes but not yet apparently deformed. The results show that this method can make up for the disadvantages of low accuracy or even failure mainly relying on remote sensing change detection. It is especially suitable for hidden and sudden geological hazard identification in areas with steep hills and dense vegetation.
基于高分辨率遥感影像的滑坡活动特征及稳定性分析——以东苗家滑坡为例
[J].
Landslide activity characteristics and stability analysis based on high-resolution remote sensing image:A case study of Dongmiaojia landslide
[J].
Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia
[J].DOI:10.1016/j.gsf.2020.05.010 URL [本文引用: 1]
基于改进层次分析法的英山县地质灾害易发性评价
[J].
IAHP-based evaluation of susceptibility of geological hazards in Yingshan County
[J].
Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio,certainty factor,and index of entropy
[J].
基于耦合信息量法选择负样本的区域滑坡易发性预测
[J].
Regional landslide susceptibility prediction based on negative sample selected by coupling information value method
[J].
基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价
[J].
Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County,Three Gorges Reservoir
[J].
基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例
[J].
Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide
[J].
顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价
[J].
DOI:10.11947/j.AGCS.2022.20220326
[本文引用: 1]
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。
Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility
[J].
DOI:10.11947/j.AGCS.2022.20220326
[本文引用: 1]
The analysis and evaluation of landslide disaster susceptibility is of great significance to the prevention and management of geological disasters. In view of the sample selection strategy and the unreasonable multi-feature mapping in single-kernel vector machine, this paper proposes the landslide susceptibility analysis and evaluation method of multiple kernel support vector machine (MKSVM) considering the sample optimization selection. To ensure sample balance and improve the plausibility of negative samples, using the relative frequency ratio (relative frequency, RF) comprehensively evaluate the importance degree of each state in the influence of landslide disaster susceptibility, the purpose is to realize the reasonable division of each evaluation factor state; Using the deterministic coefficient method (certainty factor, CF) calculates the sensitivity of each state of each evaluation factor, the weighted sum has obtained the landslide disaster susceptibility index of each grid cell, non-landslide disaster points consistent with the number of landslide disaster points were randomly selected in the very low and low landslide disaster prone index as the negative sample data. Then, multi-kernel learning is used to select the SVM optimal kernel function and to linear combine the optimal kernel functions in each feature space to avoid unreasonable mapping of a single kernel function, and it improve the classification accuracy and prediction accuracy of the model. Taking Xiangxi Tujia and Miao Autonomous Prefecture of Hunan province as the research area, MKSVM model of CF sample strategy, single-kernel SVM model of CF sample strategy, MKSVM model of random sample strategy and single-kernel SVM model of random sample strategy were compared analyzed from three aspects of landslide disaster prone zoning map, partition statistics and evaluation model accuracy. The results indicate that the subject operating characteristic curves of the four models (receiver operating characteristic, area under the ROC) (area under curve, AUC) were 0.859,0.809,0.798,0.766, the rationality and validity of the CF sample strategy and the reliability of the MKSVM model are verified.
基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例
[J].
Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area
[J].
基于多源遥感数据的山区铁路滑坡危险性评价
[J].
Landslide hazard assessment of mountain railways based on multi-source remote sensing data
[J].
基于深度信念网络的滑坡敏感性评价
[J].
DOI:10.12068/j.issn.1005-3026.2020.05.001
[本文引用: 1]
滑坡敏感性评价中各致灾因子之间存在复杂非线性关系,传统的评价模型难以揭示该类复杂关系,以致评价结果精度受限.基于文献调查与实地调研,选取高程、地貌类型、岩性、坡度、与构造线距离、与水系距离和年均降雨量为主要致灾因素,在地理信息系统(GIS)中建立了基于深度信念网络(DBN)模型的区域滑坡敏感性区划模型,并以四川区域为例进行了实例分析.最后通过ROC曲线特征将评价结果与逻辑回归(LR)和人工神经网络(BPNN)模型评价结果进行了对比分析,并探讨了各评价模型对不同致灾因子的响应.研究表明DBN模型具有更高精度以及较低的假阳性率和假阴性率,更适合于大区域、复杂致灾因素的区划滑坡敏感性评价工作.
Landslides susceptibility assessment based on deep belief network
[J].
时序InSAR技术在山区公路遥感地质勘察中的应用
[J].
Application of time series InSAR technology in remote sensing geological survey of mountainous highway
[J].
基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别
[J].
Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology
[J].
利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡
[J].
Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data
[J].
综合多特征的极化SAR图像随机森林分类算法
[J].
Multi-feature-based classification method using random forest and superpixels for polarimetric SAR images
[J].
基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测
[J].
Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia,Gansu Province
[J].
Permanent scatters in SAR Interferometry
[J].DOI:10.1109/36.898661 URL [本文引用: 1]
A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms
[J].DOI:10.1109/TGRS.2002.803792 URL [本文引用: 1]
基于SBAS技术的岷江流域潜在滑坡识别
[J].
Application of the SBAS technique in potential landslide identification in the Minjiang watershed
[J].
Multi-sensor advanced DInSAR monitoring of very slow landslides:The Tena Valley case study (Central Spanish Pyrenees)
[J].DOI:10.1016/j.rse.2012.09.020 URL [本文引用: 1]
九寨沟县滑坡灾害易发性快速评估模型对比研究
[J].
Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China
[J].
/
〈 |
|
〉 |
