自然资源遥感, 2025, 37(3): 123-132 doi: 10.6046/zrzyyg.2024061

技术方法

联合机载LiDAR和星载多光谱数据的森林地上生物量异速生长模型构建方法

丁相元,1,2,3, 陈尔学,1,2,3, 赵磊1,2,3, 范亚雄1,2,3, 徐昆鹏1,2,3, 马云梅1,2,3

1.林木资源高效生产全国重点实验室,北京 100091

2.中国林业科学研究院资源信息研究所,北京 100091

3.国家林业和草原局林业遥感与信息技术重点实验室,北京 100091

An allometric model method for estimating forest aboveground biomass based on airborne LiDAR and satellite multispectral data

DING Xiangyuan,1,2,3, CHEN Erxue,1,2,3, ZHAO Lei1,2,3, FAN Yaxiong1,2,3, XU Kunpeng1,2,3, MA Yunmei1,2,3

1. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100091, China

2. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

3. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China

通讯作者: 陈尔学(1968-),男,博士,研究员,主要从事雷达应用技术研究。Email:chenerx@ifrit.ac.cn

收稿日期: 2024-02-6   修回日期: 2024-06-11  

基金资助: 国家重点研发项目“多源遥感协同森林地上生物量估测技术”(2023YFF1303900)

Received: 2024-02-6   Revised: 2024-06-11  

作者简介 About authors

丁相元(1990-),男,博士,主要从事遥感技术与应用研究。Email: dxy4201@126.com

摘要

森林地上生物量(above ground biomass,AGB)是森林资源监测的重要指标之一,是森林碳储量的重要组成部分。形式简单且具有物理意义的森林AGB估测模型对提高森林资源监测效率具有重要的意义。文章在已有研究基础上,提出了一种联合机载LiDAR提取的高度特征、森林郁闭度以及星载多光谱植被指数的森林AGB异速生长模型估测方法。以内蒙古根河市为试验区,基于2022年获取的LiDAR数据、哨兵2A多光谱数据以及邻近时间获得的样地数据,对比分析了LiDAR高度特征和多种植被指数与森林AGB的相关性,选择最优LiDAR高度特征与植被指数应用于所提出的模型(ModelBN),并与仅利用高度特征(ModelB)、高度特征与植被指数联合(ModelBY)、高度特征与郁闭度联合(ModelBHC)3种模型进行对比。结果表明: LiDAR高度特征中,90%高度分位数(H90)与研究区森林AGB的相关性最高; 所用植被指数中,核函数植被指数KNDVIrel与森林AGB的相关性最高。4种模型中,ModelBN模型具有最高的 R a d j 2值(0.78)和估测精度(83.25%)、最低的均方根误差(root mean squared error,RMSE)(15.87 t/hm2); ModelBN模型估测结果精度优于ModelBHC(R a d j 2EA分别提高0.05和1.75百分点,RMSE降低1.66 t/hm2),ModelBY模型估测结果精度优于ModelB(R a d j 2EA分别提高0.03和1.19百分点,RMSE降低1.12 t/hm2),说明植被指数作为指数幂的合理性; 虽然ModelBN模型并非所有像元的不确定性最低,但整体最优。总体来看,ModelBN模型精度最高,简单高效,且有一定的物理意义,可作为一种新的森林AGB估测技术手段,为森林资源监测提供技术支撑。

关键词: 森林AGB; 多源数据; 异速生长模型; 遥感估测

Abstract

Forest aboveground biomass (AGB) serves as a significant indicator for monitoring forest resources and a crucial part of forest carbon stock. AGB estimation methods, characterized by simple models and physical significance, play a significant role in improving the monitoring efficiency of forest resources. Based on previous studies, this study proposed an allometric model method for AGB estimation by integrating the height features and forest canopy closure derived from the airborne light detection and ranging (LiDAR), and the vegetation indice derived from satellite multispectral data (also referred to as ModelBN). This study investigated Genhe City in Inner Mongolia using LiDAR data and Sentinel-2A multispectral data acquired in 2022, combined with sample plot data obtained around this period. By comparatively analyzing the correlations of LiDAR-derived height features and vegetation indices with AGB, this study applied optimal LiDAR-derived height features and vegetation indices to ModelBN. Finally, this model was compared with models using only height features (ModelB), integrating both height features and vegetation indices (ModelBY), and combining height features and canopy closure (ModelBHC). The results indicate that among the LiDAR-derived height features, the 90th height percentile (H90) exhibited the highest correlation with AGB in the study area. Among the vegetation indices, the kernel normalized difference vegetation index manifested the highest correlation with AGB. Among the four models, the ModelBN achieved the highest adjusted R-square value (R a d j 2, 0.78), the highest estimation accuracy (EA, 83.25 %), and the lowest root mean square error (RMSE, 15.87 t/m2). The ModelBN outperformed the ModelBHC, with improvements in R a d j 2 value and EA by 0.05 and 1.75 %, respectively, and a reduction in RMSE by 1.66 t/hm2. The ModelBY outperformed the ModelB, with improvements in R a d j 2 value and EA by 0.03 and 1.19 %, respectively, and a reduction in RMSE by 1.12 t/hm2. These results demonstrate the rationality of using vegetation indices as an exponential power. Despite the failure to possess the lowest uncertainty in all pixels, the ModelBN showed the optimal performance. Overall, the ModelBN demonstrates the highest accuracy, a simple and efficient process, and certain physical significance. Therefore, the ModelBN can function as a novel technique for AGB estimation to provide technical support for forest resource monitoring.

Keywords: aboveground biomass (AGB); multi-source data; allometric model; remote sensing estimation

PDF (4394KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

丁相元, 陈尔学, 赵磊, 范亚雄, 徐昆鹏, 马云梅. 联合机载LiDAR和星载多光谱数据的森林地上生物量异速生长模型构建方法[J]. 自然资源遥感, 2025, 37(3): 123-132 doi:10.6046/zrzyyg.2024061

DING Xiangyuan, CHEN Erxue, ZHAO Lei, FAN Yaxiong, XU Kunpeng, MA Yunmei. An allometric model method for estimating forest aboveground biomass based on airborne LiDAR and satellite multispectral data[J]. Remote Sensing for Land & Resources, 2025, 37(3): 123-132 doi:10.6046/zrzyyg.2024061

0 引言

森林地上生物量(above ground biomass,AGB)是森林资源监测的重要指标之一,是碳储量的重要组成部分,及时、准确地估测森林AGB,对森林资源管理和保护具有重要意义[1]。传统森林AGB监测方法是通过收获法或者人工测量胸径或树高,然后根据已经建立的异速生长模型进行估测[2-3],这些方法虽然精度高,但费时、费力,且成本较高,很难实现大范围森林AGB的高效估测[4]。遥感技术的发展使得快速高效地获取大范围森林AGB成为可能,但遥感数据种类较多,如何充分发挥各数据的优势仍面临一定的挑战。

当前,大范围森林AGB遥感估测主要是将遥感数据特征作为自变量,将森林AGB作为因变量建立回归估测模型(如线性、非线性模型,机器学习模型等),遥感特征来自单一或者多种数据源,但估测方法多为数据驱动确定最终模型,通常从大量特征中进行特征优选,再估测目标变量[5-7]。这类方法结果精度较高,但使用的特征稳定性欠佳,所确定的模型可解释性较差。因此部分学者开始研究具有物理意义的森林AGB遥感估测方法,这里物理意义是指基于高度信息、胸径、郁闭度或者冠幅等的异速生长模型,通常为指数形式,如利用立体像对数据和已知林下地形提取植被冠层高度模型(canopy height model,CHM),进而建立基于CHM的森林AGB模型估测[8],但这类方法的精度有限; 利用地基、星载或航空LiDAR数据,建立高度信息和三维特征相结合的异速生长模型估算森林AGB[9],由于需要地面LiDAR数据的支撑,因此该方法适合单木或样地级别的森林AGB估测,大范围森林AGB估测成本较高; 基于LiDAR数据获取高度信息与森林郁闭度等与森林AGB强相关的特征,建立异速生长方程,实现森林AGB估测等[10-12],这类方法虽然精度较高,但利用的森林结构信息有限,仍有提升空间。所有模型中,基于LiDAR数据反演树高信息建立的物理模型应用较为广泛,但实际应用中,胸径和树高联合的异速生长模型比单一变量的模型精度更高[13],虽然通过地基激光雷达可以获取较高精度的胸径数据,但该方法对人力、物力的要求仍然很高,也很难满足大范围森林AGB的连续估测[14]。实际上,胸径代表的是林木生长变化特征的属性,它与树的代谢率有关[15],而光学数据光谱信息尤其是红外和近红外波段,代表了植被光合速率的能力[16-17],植被指数常被用来表征植被生长代谢能力[18-19],对此,Yang等[20]充分利用林分的立体结构和光谱信息,提出一种联合机载LiDAR提取的冠层高度信息和星载多光谱归一化植被指数(normalized difference vegetation index,NDVI)的森林AGB估测异速生长方程,并与高度信息为底的异速生长模型、随机森林、神经网络以及多元线性回归方法进行了对比,结果显示该方法在模型稳定性和模型精度方面都具有一定优势。但该研究中仅利用了NDVI进行试验,并未与其他植被指数进行对比分析。同时,有研究显示,高度信息和森林覆盖度/郁闭度相结合的森林AGB估测模型精度优于仅利用高度信息的异速生长模型[21-22]。那么,将机载LiDAR提取的高度信息和郁闭度与星载多光谱植被指数相结合是否可以进一步改善森林AGB估测效果?目前尚未看到相关研究报道。

基于以上分析,本研究以内蒙古呼伦贝尔根河市实验林场为研究区,在前人研究的基础上,提出一种联合LiDAR估测高度特征、森林郁闭度以及星载多光谱植被指数的异速生长模型方法,充分利用LiDAR提供的高度特征、郁闭度和多光谱数据提供的光谱信息,并与仅利用高度信息、高度信息与植被指数联合、高度信息与森林郁闭度联合3种模型进行对比分析,验证其可行性,为森林资源监测提供技术参考。

1 研究区概况与数据源

1.1 研究区概况

本研究试验区位于内蒙古自治区呼伦贝尔市根河市(图1),该地区地势起伏平缓,相对高差在100~300 m之间。试验区总面积约110 km2,平均海拔在1 000 m以上,属于高纬度、高寒冷地区。气候为寒温带湿润型森林气候,兼具大陆季风性气候特征,空气湿润寒冷,冬季长夏季短,每年7—8月为多雨季节。日气温温差较大,无霜期平均为90 d,平均气温-5.4 °C,极端最低气温-55 °С,结冻期210 d以上,境内遍布永冻层。试验区植被以森林植被和草原植被为主,森林覆盖率高达75%,居内蒙古自治区之首。主要优势树种为兴安落叶松(Larixgmelinii)、白桦(Betula platyphylla)、樟子松(Pinus sylvestris var.mongholica Litv)以及山杨(Populus davidiana)等[23-25]

图1

图1   研究区位置与样地分布示意图

Fig.1   Location of the study area and distribution of sample plots


1.2 数据源及其预处理

1.2.1 样地数据

2021年和2022年对试验区进行了样地调查,共获取样地108块(图1)。其中2021年60块,2022年48块,样地大小为25 m×25 m,对样地内胸径大于5 cm的树木进行每木检尺,测量胸径、树高、东西冠幅、南北冠幅及枝下高等参数,2 a数据中共有80块落叶松样地、14块白桦样地以及14块混交林。为减少后期遥感影像与样地位置偏差带来的影响,样地位置主要布设在范围较大且均匀的林分中心,样地4个角点位置及样地中心位置采用Zenith15R型GPS-RTK精确测量,测量精度优于0.15 m。样地优势树种类型包括落叶松和白桦等。然后根据周国逸等[26]提出的异速生长方程计算样地内每一个树种单木地上生物量,合计得到样地总生物量和生物量密度用于后续分析。从108块样地中随机抽取70%的样地数据用于训练,30%用于验证。样地的生物量范围为34.39~210.22 t/hm2,平均值、中值和标准差分别为98.72 t/hm2,91.78 t/hm2和39.58 t/hm2,偏度和峰度分别为0.58和-0.22,对该区域森林结构具有较好的代表性。试验区森林生长较为缓慢,因样地调查时差引起的森林样地AGB差异可以忽略不计。

1.2.2 机载激光雷达数据

LiDAR数据采集于2022年8月,使用CAF-LiCHy数据采集系统[27],其中LiDAR传感器型号为Riegl LMS-Q680i,原始LiDAR点云数据经姿态矫正、噪声点剔除、坐标转换、航带拼接、系统差改正等预处理后,利用LASTOOLS软件进行点云分类、去噪以及归一化等处理得到归一化植被点云数据。由于异速生长模型的物理意义明确,本研究采用Fusion软件[28]提取点云高度均值(mean)、森林郁闭度(canopy density)、高度最大值(maximum)以及高度百分位数(percentiles)等[29-30]用于后续分析,特征详细信息见表1。为与样地大小保持一致,将研究区按25 m×25 m统计单元分割,并统计每个统计单元内各个特征的均值用于后续分析。

表1   LiDAR数据特征

Tab.1  Features of LiDAR

LiDAR特征名称特征符号描述
均值Hmean25 m×25 m统计单元内点云高度均值
森林郁闭度CD25 m×25 m统计单元内冠层回波点云与全部回波点云的比值
最大值Hmax25 m×25 m统计单元内点云高度最大值
百分位数H10,H20,…,H90,H95不同高度点云百分位数

新窗口打开| 下载CSV


1.2.3 卫星数据

卫星数据采用哨兵2A(Sentinel-2A)多光谱数据,数据来自 Copernicus Open Access Hub 网站(https://scihub.copernicus.eu/),需要2景才能对试验区实现全覆盖。受云雨天气影响,无法获取与地面样地数据获取时间完全同步的影像,因此获取了可用的与其时间相近的生长季影像,时间为2022年7月8日。利用欧洲空间局提供的开源SNAP软件(https://earth.esa.int/eogateway/tools/snap)对每景数据进行了辐射定标、大气校正和正射校正等预处理,经以上处理后的哨兵2A数据的像元大小设为25 m×25 m(和样地大小一致); 然后对这2景预处理后的数据进行镶嵌处理,进而裁切得到覆盖整个试验区的多光谱遥感数据。

本文选择了几种常用的植被指数,包括NDVI[18]、2种红边植被指数(red-edged normalized difference vegetation index,NDVIre1和NDVIre2)[31]、差值植被指数(difference vegetation index,DVI)[32]、增强植被指数(enhanced vegetation index,EVI)[33]、比值植被指数(ratio vegetation index,RVI)[34]及土壤调节植被指数(soil adjusted vegetation index,SAVI)[35]。另外,增加了一种新的植被指数——核函数归一化植被指数(kernel normalized difference vegetation index,KNDVI),该指数是采用核函数思想变换而来,已有研究显示,该指数可明显提高森林碳储量的估测精度[36]。利用相同的方法计算了NDVIre1和NDVIre2对应的核函数变换后的植被指数KNDVIre1和KNDVIre2。本文将核函数变换后的KNDVI,KNDVIre1和KNDVIre2统称为核函数植被指数。

2 研究方法

2.1 特征与AGB相关性分析

选用皮尔逊相关系数作为评价指标,对比分析LiDAR点云数据提取的高度特征、森林郁闭度以及哨兵2A多光谱数据计算的植被指数与森林AGB之间的相关关系,选择最优高度特征和植被指数特征用于后续分析[37]

2.2 模型与优化

基于LiDAR的异速生长模型常用的特征为高度信息,模型常采用指数幂形式[38-39],该方法简单高效,具有物理意义,应用最广泛,但LiDAR数据仅能提供森林的垂直结构信息,且模型精度仍有提升的空间。本文以Yang等[20]提出的模型为基础,提出以高度信息和森林郁闭度乘积为底,植被指数作为指数幂的森林AGB异速生长模型(ModelBN),并与仅利用高度信息(ModelB)、高度信息与植被指数联合(ModelBY)、高度信息与森林郁闭度联合(ModelBHC)3种模型进行对比分析。对各模型两边取对数,可在一定程度上减少模型出现异方差的现象,转换后的模型如式(1)—(4)所示:

ModelBN:lnB=lnaN+bNVI×        ln(H×CD)+ρN
ModelB:lnB=lna+blnH+ρ
ModelBY:lnB=lnaY+bYVI×lnH+ρY
ModelBHC:lnB=lnaHC+         bHCln(H×CD)+ρHC

式中: a,b,aY,bY,aHC,bHC,aNbN为模型参数; B为森林AGB; H为LiDAR数据提取的高度特征; VI为植被指数; CD为森林郁闭度; ρ,ρY,ρHCρN为对数变换后模型的随机残差项。

2.3 模型精度评价

选用调整决定系数Radj2、均方根误差(root mean square error,RMSE)、估测精度(estimation accuracy,EA)为评价模型模拟精度的指标,计算公式分别为:

$R^{2}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$,
Radj2=1-(1-R2)n-1n-1-p
$R M S E=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-1}}$,
EA=1-RMSEy¯×100%

式中: yi为真实值; y-为真实值的均值;$ \hat{y}_{i}$为估测值; n为样本点的个数; p为特征个数。

2.4 像元不确定性估测

近年来,不确定性估测越来越重要,尤其是遥感估测产品像元尺度的不确定性估测[40],因此本研究在已有研究基础上估测了每个统计单元的不确定性,其中,不确定性代表估测值偏离均值的大小,单位为 t/hm2。假设样地数据为相对“真值”,每个统计单元的总体不确定性由模型参数的不确定性和残差变异导致的不确定性构成,总体不确定性估测参考Saarela等[41]与McRoberts等[42]所提出的方法,像元总体不确定性计算公式为:

RMSE(Modeli)=X~TiCov(α)X~i+V(θi)
X~i=Model(α,X~)α

式中: RMSE(Modeli)为模型Model在像元i处的总体不确定性; Modeli为Model在像元i处的预测结果; X~i为一个(q+1)长度的向量,其值为模型Model在像元i处对参数α的偏导数组成的向量,其中q为参数的个数; Cov(α)为参数α的协方差矩阵; V(θi)为模型Model残差θi的方差。Cov(α)的计算参考Saarela等[43]所用的方法,其公式为:

Cov(α)=σ2(X~TX~)-1
$\hat{y}_{i}\sigma^{2}=\hat{\boldsymbol{\varepsilon}}^{\mathrm{T}} \hat{\boldsymbol{\varepsilon}} /(n-q-1)$,

式中: σ2为残差方差; n为样本数;$\hat{\boldsymbol{\varepsilon}}$为残差向量,由每个样地数据对应的残差ε构成。由于式(1)—(4)并不是模型的原始形式,因此利用 Snowdon 等[44]提出的改正因子对模型残差方差进行改正,改正因子为eσ2/2。当模型存在异方差时,参数的协方差矩阵公式为:

Cov(α)=(X~TX~)-1t=1nεt2X~X~T(X~TX~)-1

残差不确定性估计参考McRoberts等[42]提出的方法,公式为:

$V\left(\theta_{i}\right)=p \overline{\hat{y}_{i}^{q}}+\delta$,

式中: p和q为模型参数; δ为残差项;$ \overline{\hat{y}}$为分组后预测森林AGB每个组的均值。具体估计步骤为: 首先,对预测的森林AGB进行排序,分成大小相同的组,每个组至少10个单元; 再计算每个组预测森林AGB的均值$\overline{\hat{y}}$和残差的方差; 最后根据式(14)计算残差的不确定性V(θi)

3 结果与分析

3.1 特征与森林AGB相关性分析

为了确定最优高度特征和植被指数,对候选特征与森林AGB的相关关系进行统计学检验,并将相关性划分为弱、中和强[45]。从表2可以看出,LiDAR高度特征与森林AGB均具有很强的相关性,其中,H90与H95高度分位数与森林AGB相关性较强,均在0.850以上,H90与森林AGB的相关性最强,相关系数达到0.860。LiDAR数据计算的森林郁闭度CD与森林AGB的相关系数可达0.452。所选的植被指数中,核函数植被指数与森林AGB的相关性明显强于原指数。除了核函数植被指数外,红边植被指数NDVIre1和NDVIre2与森林AGB的相关性明显强于其他指数,主要原因是这2种植被指数中包含了对绿色植被更加敏感的红边波段[46],其中NDVIre1的相关性较高,可达到0.435; 所有植被指数中,KNDVIre1与森林AGB相关性最强,达到0.483。

表2   特征与森林AGB相关系数

Tab.2  Coefficients between features and forest AGB

LiDAR哨兵2A
特征相关性特征相关性
H100.553***①NDVI0.276**
H200.548***NDVIre10.435***
H300.682***NDVIre20.389***
H400.704***KNDVI0.347***
H500.731***KNDVIre10.483***
H600.762***KNDVIre20.427***
H700.806***DVI0.137*
H800.839***EVI0.243*
H900.860***RVI0.269**
H950.851***SAVI0.276**
Hmean0.816***
Hmax0.747***
CD0.452***

*p<0.05; **p<0.01; ***p<0.001。

新窗口打开| 下载CSV


3.2 不同模型对比与精度评价

将相关性最高的H90和KNDVIre1特征应用于模型中,4种模型参数拟合结果见表3。从图2可以看出,ModelB估测结果精度R2adj为0.71,RMSE为18.26 t/hm2,EA为80.73%。ModelBHC估测结果精度优于ModelB,R2adjEA分别达到0.73和81.50%,RMSE达到17.53 t/hm2,说明利用高度特征与森林郁闭度乘积的异速生长模型可提高森林AGB估测精度,与已有研究一致[21-22]。与ModelB相比,ModelBY估测结果精度提高,R2adjEA分别提高0.03和1.19百分点,RMSE降低1.12 t/hm2; 同样,与ModelBHC相比,ModelBN估测结果的精度更高,R2adjEA分别提高了0.05和1.75百分点,RMSE降低了1.66 t/hm2,说明将植被指数作为异速生长模型因子可提高森林AGB的估测精度。综合来看,本研究提出的改进模型ModelBN估测结果精度最高,R2adj可达到0.78,RMSE为15.87 t/hm2,EA提高到83.25%。

表3   模型拟合结果

Tab.3  Model fitting results

模型拟合结果
ModelB2.2061H901.450445
ModelBY13.652738H902.613457KNDVIre1
ModelBHC10.21288(H90×CD)1.005704
ModelBN23.82296(H90×CD)2.212977KNDVIre1

新窗口打开| 下载CSV


图2

图2   模型估测结果精度评价

Fig.2   Accuracy evaluation of model and model estimation results


3.3 不同模型像元尺度不确定性估测结果

各个模型估测结果与其不确定性空间分布情况见图3,由结果可以看出4种方法森林AGB估测结果趋势基本一致,不确定性空间分布虽有差异,但本文方法的不确定性总体上低于其他3种方法。对研究区所有像元预测结果的不确定性统计分析发现,ModelB模型的不确定性范围为13.42~47.58 t/hm2,ModelBY模型不确定性范围为6.67~45.38 t/hm2,ModelBHC模型不确定性范围为0.53~41.18 t/hm2,ModelBN模型不确定性范围为0.21~18.55 t/hm2。为了进一步评价模型表现,对不同模型像元尺度不确定性变化规律进行分析,采取随机抽样的方式随机抽取3 000个点进行分析,保证抽样数据的代表性,为了避免非森林区域的影响,抽样范围限制在CHM>2.5 m的区域。从图4可以看出,随着森林AGB的增加,ModelBN不确定性先增大后减小,ModelBY和ModelBHC的不确定性不断增大,而ModelB模型不确定性先减小后增大。当森林AGB>160 t/hm2时,模型不确定性由高到低为ModelB,ModelBHC,ModelBY,ModelBN; 当森林AGB在[90,160] t/hm2时,模型不确定性由高到低为ModelBHC,ModelB,ModelBY,ModelBN; 当森林AGB<90 t/hm2时,ModelBN模型不确定性并不总是最低,ModelBHC和ModelBY模型不确定性也并不总是低于ModelB; 虽然ModelBY模型不确定性范围比ModelBHC宽,但ModelBY估测结果不确定性整体上低于ModelBHC; ModelB估测结果不确定性整体上高于其他3个模型(图4)。综合来看,模型不确定性整体趋势由高到低为ModelB,ModelBHC,ModelBY和ModelBN,本文提出的模型整体最优。

图3-1

图3-1   不同模型森林AGB估测结果与不确定性空间分布

Fig.3-1   Spatial distribution of forest AGB estimation results and uncertainty on different methods


图3-2

图3-2   不同模型森林AGB估测结果与不确定性空间分布

Fig.3-2   Spatial distribution of forest AGB estimation results and uncertainty on different methods


图4

图4   像元尺度不确定性变化

Fig.4   Uncertainty changes of pixel scale


4 讨论

LiDAR高度特征与森林AGB有很强的相关性,但以往研究显示最优的LiDAR高度特征与所用数据和研究区域有关,如有研究显示H60和H50点云高度分位数与森林AGB相关性最高[47-48],也有研究显示H90与森林AGB相关性最高[49],最常用的LiDAR高度特征为冠层平均高[50],本研究中,H90与研究区森林AGB的相关性最高(表2),因此LiDAR数据的实际应用中,仍需要对所用数据进行分析,确定最优高度特征。通过对比不同植被指数与森林AGB相关性发现,Camps-Valls等[36]提出的核函数植被指数特征与森林AGB的相关性优于其他植被指数,主要原因为该指数可在一定程度上改善森林AGB估测中饱和效应和非植被背景的影响,因此核函数植被指数可作为森林AGB估测的首选植被指数。然而,植被指数与森林AGB的相关性明显低于LiDAR高度特征,若单独利用植被指数估测全覆盖森林AGB,结果精度可能很难满足实际应用[51],但植被指数可很好地反映植被群落结构的平均生长状态[52],基于此,Yang等[20]提出了以森林LiDAR高度信息为底,植被指数作为指数幂的森林AGB估测异速生长模型方法,本研究对该方法进行了测试,结果精度优于仅利用LiDAR高度特征的模型估测结果(图2(a)图2(b)),与Yang等的结果一致。通过对比发现,高度特征和森林郁闭度相结合的异速生长模型估测结果精度优于仅利用高度特征的模型方法(图2(a)图2(c)),在此基础上,将植被指数作为指数幂,模型估测结果精度优于其他3种模型(图2(d)),再次说明了植被指数作为指数幂的可行性。

虽然本研究提出的森林AGB估测方法可以提高估测精度,但从像元不确定性变化来看,并不是在所有森林AGB范围都为最优(图4),主要原因可能为研究所用的哨兵2A数据时相为7月份,而不同植被类型的生长模式不同,代表最佳生长状态的植被指数可能出现在不同时相,这也是大量学者在应用植被指数时,采用多时相最大值合成的原因[52-53],因此,未来将针对不同时相的植被指数对模型的影响进行深入研究。另外,本研究提出的方法中森林郁闭度也是一个重要的参数,之所以采用LiDAR数据提取森林郁闭度,主要是因为与光学或SAR等数据相比,LiDAR提取的森林郁闭度精度更高[54-55]。但激光雷达点云数据受扫描角度和点云密度等因素影响较大,在一定程度上会影响森林郁闭度的估测精度,进而对森林AGB估测产生一定的影响,这些因素如何影响本研究提出的模型可能是复杂的,也有待将来进一步研究。综合来看,本文提出的方法模型简单,且具有一定物理意义,可为森林AGB估测提供一种新的选择。

5 结论

研究提出了一种联合LiDAR高度特征、森林郁闭度以及星载多光谱植被指数的异速生长模型构建方法,并与已有的3种模型进行了对比,分析了LiDAR高度特征和星载多光谱植被指数与森林AGB相关性,得出以下结论:

1)LiDAR高度特征与森林AGB强相关,本研究中H90与森林AGB相关性最高; 与常用的植被指数相比,核函数植被指数更适用于森林AGB估测。

2)植被指数作为指数幂可提高森林AGB估测精度,联合LiDAR高度特征、森林郁闭度以及植被指数的森林AGB估测异速生长模型方法是可行的,可改善森林AGB的估测精度。

参考文献

Le Toan T, Quegan S, Davidson M W J, et al.

The BIOMASS mission:Mapping global forest biomass to better understand the terrestrial carbon cycle

[J]. Remote Sensing of Environment, 2011, 115(11):2850-2860.

[本文引用: 1]

Chirici G, McRoberts R E, Fattorini L, et al.

Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework

[J]. Remote Sensing of Environment, 2016,174:1-9.

[本文引用: 1]

董利虎, 李凤日.

大兴安岭东部主要林分类型乔木层生物量估算模型

[J]. 应用生态学报, 2018, 29(9):2825-2834.

DOI:10.13287/j.1001-9332.201809.014      [本文引用: 1]

大尺度森林生物量的估算方法是人们目前关注的焦点,建立林分生物量模型成为一种趋势.本研究以大兴安岭东部6个主要林分类型为研究对象,构建了其总量及各分项一元、二元可加性林分生物量模型.采用似然分析法判断总量及各分项生物量异速生长模型的误差结构(可加型或相乘型),采用非线性似乎不相关回归模型方法估计模型参数.结果表明: 经似然分析法判断,大兴安岭东部6个主要林分类型总量及各分项生物量异速生长模型的误差结构都是相乘型的,对数转换的可加性生物量可以被选用.各林分类型可加性生物量模型的调整后确定系数为0.78~0.99,平均相对误差为-2.3%~6.9%,平均相对误差绝对值6.3%~43.3%.增加林分平均高可以提高绝大多数生物量模型的拟合效果和预测能力,而且总量、地上和树干生物量模型效果较好,树根、树枝、树叶和树冠生物量模型效果较差.为了使模型参数估计更有效,所建立的生物量模型应当考虑林分总生物量及各分项生物量的可加性.本研究建立的林分总量与各分项生物量模型都能对大兴安岭东部6个主要林分类型生物量进行较好的估计.

Dong L H, Li F R.

Stand-level biomass estimation models for the tree layer of main forest types in East Daxing’an Mountains,China

[J]. Chinese Journal of Applied Ecology, 2018, 29(9):2825-2834.

DOI:10.13287/j.1001-9332.201809.014      [本文引用: 1]

Forest biomass estimation methods of regional scale attract most attention of the resear-chers, with developing stand-level biomass model being a research trend. Based on the biomass data from fix forest types, two additive systems of biomass equations based one- and two-variable were developed. The model error structure (additive vs. multiplicative) of the allometric equation was evaluated using the likelihood analysis. The nonlinear seemingly unrelated regression (NSUR) was used to estimate the parameters in the additive system of stand-level biomass equations. The results showed that the assumption of multiplicative error structure was strongly supported for the stand-level biomass equations of total and components for those forest types. Thus, the additive system of log-transformed biomass equations was developed. The adjusted coefficient of determination of the additive system of biomass equations was 0.78-0.99, the mean relative error was between -2.3%-6.9%, and the mean absolute relative error was between 6.3%-43.3%. Adding mean tree height in the additive systems of biomass equations could significantly improve the model fitting performance and predicting precision for most of the models. The biomass equations of total, aboveground and stem were better than biomass equations of root, branch, foliage and crown. In order to estimate model parameters more effectively, the additivity property of estimating tree total, sub-totals, and component biomass should be taken into account. Overall, the stand-level biomass models established in this study would be suitable for predicting stand-level biomass of six forest types in Daxing&rsquo;an mountains.

娄雪婷, 曾源, 吴炳方.

森林地上生物量遥感估测研究进展

[J]. 国土资源遥感, 2011, 23(1):1-8.doi:10.6046/gtzyyg.2011.01.01.

[本文引用: 1]

Lou X T, Zeng Y, Wu B F.

Advances in the estimation of above-ground biomass of forest using remote sensing

[J]. Remote Sensing for Land and Resources, 2011, 23(1):1-8.doi:10.6046/gtzyyg.2011.01.01.

[本文引用: 1]

de Almeida C T, Galvão L S, de Oliveira Cruz e Aragão L E, et al.

Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms

[J]. Remote Sensing of Environment, 2019,232:111323.

[本文引用: 1]

Gleason C J, Im J.

Forest biomass estimation from airborne LiDAR data using machine learning approaches

[J]. Remote Sensing of Environment, 2012,125:80-91.

潘磊, 孙玉军, 王轶夫, .

基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算

[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.

DOI:10.3969/j.issn.1000-2006.201811012      [本文引用: 1]

目的雷达和光学遥感数据可以提供不同方面的信息,利用Sentinel?1与Sentinel?2联合估算亚热带地区森林地上生物量,探索光学数据与合成孔径雷达(SAR)数据结合对于提高森林地上生物量估测的优势。方法以福建省将乐国有林场杉木林为研究对象,以Sentinel?1 SAR数据和Sentinel?2光学数据为数据源,采用多元线性逐步回归方法进行建模,以决定系数(R2)、调整决定系数(R2<sub>adj</sub>)、均方根误差(RMSE)、方差膨胀因子(VIF)为模型评价指标,对比分析Sentinel?2光学数据与Sentinel?2结合Sentinel?1 SAR数据估算森林地上生物量的能力。结果基于Sentinel?2光学数据的森林地上生物量估算模型,其调整决定系数(R2<sub>adj</sub>)达到0.501、均方根误差(RMSE)为64.04 Mg/hm<sup>2</sup>;Sentinel?2光学数据结合Sentinel?1 SAR数据的森林地上生物量估算模型,其调整决定系数(R2<sub>adj</sub>)达到0.575、均方根误差(RMSE)为59.13 Mg/hm<sup>2</sup>,对比Sentinel?2估算模型,该模型精度有明显提高。结论Sentinel?2卫星的多光谱数据能够作为估算亚热带地区森林地上生物量的有效数据,加入Sentinel?1 SAR影像的极化纹理信息后,利用Sentinel?1雷达传感器的全天候获取数据能力与Sentinel?2多光谱传感器丰富的光谱波段信息特点,以及两者短重访周期的能力,能够有效提高估算森林地上生物量模型的精度。

Pan L, Sun Y J, Wang Y F, et al.

Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J].Journal of Nanjing Forestry University (Natural Sciences Edition)

2020, 44(3):149-156.

[本文引用: 1]

Puliti S, Hauglin M, Breidenbach J, et al.

Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data

[J]. Remote Sensing of Environment, 2020,236:111501.

[本文引用: 1]

Du L M, Pang Y, Wang Q, et al.

A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

[J]. Remote Sensing of Environment, 2023,290:113543.

[本文引用: 1]

West G B, Brown J H, Enquist B J.

A general model for the structure and allometry of plant vascular systems

[J]. Nature, 1999, 400(6745):664-667.

[本文引用: 1]

吴发云, 高显连, 周蓉, .

基于林分高度及郁闭度的森林生物量和蓄积量模型研究

[J]. 林业资源管理, 2021(2):61-67.

Wu F Y, Gao X L, Zhou R, et al.

Research on forest biomass and stock volume model based on stand height and canopy density

[J]. Forest Resources Management, 2021(2):61-67.

Alexander C, Korstjens A H, Hill R A.

Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

[J]. International Journal of Applied Earth Observation and Geoinformation, 2018,65:105-113.

[本文引用: 1]

Chave J, Réjou-Méchain M, Búrquez A, et al.

Improved allometric models to estimate the aboveground biomass of tropical trees

[J]. Global Change Biology, 2014, 20(10):3177-3190.

DOI:10.1111/gcb.12629      PMID:24817483      [本文引用: 1]

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.© 2014 John Wiley & Sons Ltd.

Tao S L, Labrière N, Calders K, et al.

Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning

[J]. Annals of Forest Science, 2021, 78(4):103.

[本文引用: 1]

Sarrus F, Rameaux J.

Application des sciences accessoires et principalement des mathematiques a la physiologie generale

[J]. Bull.Acad.R.Méd.Belg., 1839,3:1094-1110.

[本文引用: 1]

Ahmad Anjum S, Xie X Y, Wang L C, et al.

Morphological,physiological and biochemical responses of plants to drought stress

[J]. African Journal of Agricultural Research, 2011, 6(9):2026-2032.

[本文引用: 1]

Gamon J A, Field C B, Goulden M L, et al.

Relationships between NDVI,canopy structure,and photosynthesis in three Californian vegetation types

[J]. Ecological Applications, 1995, 5(1):28-41.

[本文引用: 1]

Rouse J, Haas R H, Deering D, et al.

Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation

[R]. Greenbelt,MD,USA, 1974.

[本文引用: 2]

Green E P, Mumby P J, Edwards A J, et al.

Estimating leaf area index of mangroves from satellite data

[J]. Aquatic Botany, 1997, 58(1):11-19.

[本文引用: 1]

Yang Q L, Su Y J, Hu T Y, et al.

Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attri-butes and optical spectral indexes

[J]. Forest Ecosystems, 2022,9:100059.

[本文引用: 3]

Ni-Meister W, Lee S, Strahler A H, et al.

Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing

[J]. Journal of Geophysical Research:Biogeosciences, 2010, 115(G2):G00E11.

[本文引用: 2]

Coomes D A, Dalponte M, Jucker T, et al.

Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data

[J]. Remote Sensing of Environment, 2017,194:77-88.

[本文引用: 2]

李春梅, 张王菲, 李增元, .

基于多源数据的根河实验区生物量反演研究

[J]. 北京林业大学学报, 2016, 38(3):64-72.

[本文引用: 1]

Li C M, Zhang W F, Li Z Y, et al.

Retrieval of forest above-ground biomass using multi-source data in Genhe,Inner Mongolia

[J]. Journal of Beijing Forestry University, 2016, 38(3):64-72.

[本文引用: 1]

张恒, 杨雨, 王柏杰, .

内蒙古大兴安岭森林可燃物燃烧释放PM2.5中水溶性离子排放特性

[J]. 应用生态学报, 2021, 32(7):2316-2324.

DOI:10.13287/j.1001-9332.202107.003     

研究森林可燃物燃烧释放的细颗粒物(PM<sub>2.5</sub>)的排放因子对于揭示森林火灾对大气和生态系统的影响至关重要,而水溶性离子是细颗粒物的重要化学成分,对颗粒物的形成具有重要意义。利用自主设计的生物质燃烧系统,模拟内蒙古大兴安岭5种典型乔木(蒙古栎、白桦、兴安落叶松、黑桦、山杨)的3种组成部分(树干、树枝、树皮)及其地表死可燃物(凋落物层、半腐殖质层、腐殖质层)以及3种典型灌木(平榛、二色胡枝子、兴安杜鹃)树枝燃烧,采用ISC1100离子色谱分析仪测定2种燃烧状态(阴燃和明燃)下PM<sub>2.5</sub>中水溶性离子(Na<sup>+</sup>、NH<sub>4</sub><sup>+</sup>、K<sup>+</sup>、Mg<sup>2+</sup>、Ca<sup>2+</sup>、F<sup>-</sup>、Cl<sup>-</sup>、NO<sub>3</sub><sup>-</sup>、NO<sub>2</sub><sup>-</sup>、SO<sub>4</sub><sup>2-</sup>)的排放因子。结果表明:乔木所有组成部分及其地表死可燃物和灌木树枝燃烧所排放PM<sub>2.5</sub>中检测到的水溶性离子,阴燃以K<sup>+</sup>、Cl<sup>-</sup>和Na<sup>+</sup>为主要组分,明燃以K<sup>+</sup>、Cl<sup>-</sup>和SO<sub>4</sub><sup>2-</sup>为主要组分。不同燃烧状态下相同乔木树种及其地表死可燃物和相同灌木排放PM<sub>2.5</sub>中检测到的水溶性离子总量均存在显著差异。灌木树枝在阴燃期间PM<sub>2.5</sub>中水溶性无机离子的排放因子比明燃更高。乔木释放的PM<sub>2.5</sub>中阳离子与阴离子的比率为1.26,地表死可燃物为1.12,灌木为2.0,表明颗粒物呈碱性。内蒙古大兴安岭的森林大火不会通过释放水溶性离子导致生态系统的酸化。

Zhang H, Yang Y, Wang B J, et al.

Emission characteristics of water-soluble ions in PM2.5 released by forest fuel combustion in Great Xing’an Mountains,Inner Mongolia,China

[J]. Chinese Journal of Applied Ecology, 2021, 32(7):2316-2324.

李晓彤, 覃先林, 刘倩, .

基于AISA eagle Ⅱ机载高光谱数据的森林可燃物类型识别方法

[J]. 遥感技术与应用, 2021, 36(3):544-551,570.

DOI:10.11873/j.issn.1004-0323.2021.3.0544      [本文引用: 1]

为形成林场级森林可燃物类型遥感精细识别方法,以内蒙古大兴安岭根河林业局潮查林场为试验区,结合地面调查和森林资源调查等资料,建立了该区域的森林可燃物类型机载高光谱影像数据分类体系;通过对各类型的原始光谱曲线、一阶微分曲线、二阶微分曲线和包络线消除曲线进行分析,得到了适用于各类型识别的特征波段;并基于生成的特征波段的主成分分析分量(信息量95%以上)及其纹理特征影像,采用随机森林方法对该区域的森林可燃物类型进行了识别。利用机载高光谱遥感数据与其他数据相结合,研究形成了林场级森林可燃物类型随机森林识别方法,识别总体精度达86.31%,Kappa系数0.836;兴安落叶松和白桦的制图精度分别达到95.58%、94.34%,表明该方法适宜用于乔木可燃物的细分,可为林场级森林可燃物更新管理、森林火灾的科学预防及扑救提供技术支撑。

Li X T, Qin X L, Liu Q, et al.

An identification method on forest fuel types based on AISA eagle Ⅱ hyperspectral data

[J]. Remote Sensing Technology and Application, 2021, 36(3):544-551,570.

[本文引用: 1]

周国逸, 尹光彩, 唐旭利, . 中国森林生态系统碳储量——生物量方程[M]. 北京: 科学出版社, 2018:58-60.

[本文引用: 1]

Zhou G Y, Yin G C, Tang X L, et al. Carbon storage-biomass equation of forest ecosystem in China[M]. Beijing: Science Press, 2018:58-60.

[本文引用: 1]

Pang Y, Li Z Y, Ju H B, et al.

LiCHy:The CAF’s LiDAR,CCD and hyperspectral integrated airborne observation system

[J]. Remote Sensing, 2016, 8(5):398.

[本文引用: 1]

McGaughey R J.

FUSION/LDV:Software for LiDAR data analysis and visualization,January 2021-FUSION Version 4.20

[EB/OL]. United stated of Department of Agriculture,Washington D C,2021. http://forsys.cfr.washington.edu/software/fusion/FUSION_manual.pdf(accessed16.6.2021).

URL     [本文引用: 1]

曹林, 徐婷, 申鑫, .

集成Landsat OLI和机载LiDAR条带数据的亚热带森林生物量制图

[J]. 遥感学报, 2016, 20(4):665-678.

[本文引用: 1]

Cao L, Xu T, Shen X, et al.

Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests

[J]. Journal of Remote Sensing, 2016, 20(4):665-678.

[本文引用: 1]

Donoghue D N M, Watt P J, Cox N J, et al.

Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data

[J]. Remote Sensing of Environment, 2007, 110(4):509-522.

[本文引用: 1]

Shoko C, Mutanga O.

Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,129:32-40.

[本文引用: 1]

Richardson A J, Wiegand C L.

Distinguishing vegetation from soil background information

[J]. Photogrammetric Engineering and Remote Sensing, 1977,43:1541-1552

[本文引用: 1]

Liu H Q, Huete A.

A feedback based modification of the NDVI to minimize canopy background and atmospheric noise

[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):457-465.

[本文引用: 1]

Jordan C F.

Derivation of leaf-area index from quality of light on the forest floor

[J]. Ecology, 1969, 50(4):663-666.

[本文引用: 1]

Huete A R.

A soil-adjusted vegetation index (SAVI)

[J]. Remote Sensing of Environment, 1988, 25(3):295-309.

[本文引用: 1]

Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al.

A unified vegetation index for quantifying the terrestrial biosphere

[J]. Science Advances, 2021, 7(9):eabc7447.

[本文引用: 2]

Ma Q, Su Y J, Luo L P, et al.

Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data

[J]. Ecological Indicators, 2018,95:298-310.

[本文引用: 1]

Gram J P.

Om Konstruktion af Normal-Tilvæxtoversigter,med særligt Hensyn til Iagttagelserne fra Odsherred.Tidsskr

[J]. Skovbrug, 1879,3:207-270.

[本文引用: 1]

Hill A, Buddenbaum H, Mandallaz D.

Combining canopy height and tree species map information for large-scale timber volume estimations under strong heterogeneity of auxiliary data and variable sample plot sizes

[J]. European Journal of Forest Research, 2018, 137(4):489-505.

[本文引用: 1]

Eggleston L, Buendia K, Miwa T. et al.

2006 IPCC guidelines for national greenhouse gas inventories,volume 4:Agriculture,forestry and other land use

[J/OL]. Institute for Global Environmental Strategies, 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

URL     [本文引用: 1]

Saarela S, Wästlund A, Holmström E, et al.

Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data,accounting for tree-level allometric and LiDAR model errors

[J]. Forest Ecosystems, 2020,7:43.

[本文引用: 1]

McRoberts R E, Næsset E, Hou Z Y, et al.

How many bootstrap replications are necessary for estimating remote sensing-assisted,model-based standard errors?

[J]. Remote Sensing of Environment, 2023,288:113455.

[本文引用: 2]

Saarela S, Schnell S, Grafström A, et al.

Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume

[J]. Canadian Journal of Forest Research, 2015, 45(11):1524-1534.

[本文引用: 1]

Snowdon P.

A ratio estimator for bias correction in logarithmic regressions

[J]. Canadian Journal of Forest Research, 1991, 21(5):720-724.

[本文引用: 1]

Schober P, Boer C, Schwarte L A.

Correlation coefficients:Appropriate use and interpretation

[J]. Anesthesia and Analgesia, 2018, 126(5):1763-1768.

[本文引用: 1]

Guerini Filho M, Kuplich T M, De Quadros F L F.

Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data

[J]. International Journal of Remote Sensing, 2020, 41(8):2861-2876.

[本文引用: 1]

Frazer G W, Magnussen S, Wulder M A, et al.

Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass

[J]. Remote Sensing of Environment, 2011, 115(2):636-649.

[本文引用: 1]

Labrière N, Tao S L, Chave J, et al.

In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions

[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10):3617-3627.

[本文引用: 1]

Duncanson L, Kellner J R, Armston J, et al.

Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission

[J]. Remote Sensing of Environment, 2022,270:112845.

[本文引用: 1]

Cushman K C, Saatchi S, McRoberts R E, et al.

Small field plots can cause substantial uncertainty in gridded aboveground biomass products from airborne lidar data

[J]. Remote Sensing, 2023, 15(14):3509.

[本文引用: 1]

Puliti S, Saarela S, Gobakken T, et al.

Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference

[J]. Remote Sensing of Environment, 2018,204:485-497.

[本文引用: 1]

Gong H D, Cheng Q P, Jin H Y, et al.

Effects of temporal,spatial,and elevational variation in bioclimatic indices on the NDVI of different vegetation types in Southwest China

[J]. Ecological Indicators, 2023,154:110499.

[本文引用: 2]

Maxwell S K, Sylvester K M.

Identification of “ever-cropped” land (1984—2010) using Landsat annual maximum NDVI image composites:Southwestern Kansas case study

[J]. Remote Sensing of Environment, 2012,121:186-195.

[本文引用: 1]

Korhonen L, Korpela I, Heiskanen J, et al.

Airborne discrete-return LIDAR data in the estimation of vertical canopy cover,angular ca-nopy closure and leaf area index

[J]. Remote Sensing of Environment, 2011, 115(4):1065-1080.

[本文引用: 1]

Ma Q, Su Y J, Guo Q H.

Comparison of canopy cover estimations from airborne LiDAR,aerial imagery,and satellite imagery

[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4225-4236.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发