Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 123-132    DOI: 10.6046/zrzyyg.2024061
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合机载LiDAR和星载多光谱数据的森林地上生物量异速生长模型构建方法
丁相元1,2,3(), 陈尔学1,2,3(), 赵磊1,2,3, 范亚雄1,2,3, 徐昆鹏1,2,3, 马云梅1,2,3
1.林木资源高效生产全国重点实验室,北京 100091
2.中国林业科学研究院资源信息研究所,北京 100091
3.国家林业和草原局林业遥感与信息技术重点实验室,北京 100091
An allometric model method for estimating forest aboveground biomass based on airborne LiDAR and satellite multispectral data
DING Xiangyuan1,2,3(), CHEN Erxue1,2,3(), ZHAO Lei1,2,3, FAN Yaxiong1,2,3, XU Kunpeng1,2,3, MA Yunmei1,2,3
1. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100091, China
2. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
3. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China
全文: PDF(4394 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 森林地上生物量(above ground biomass,AGB)是森林资源监测的重要指标之一,是森林碳储量的重要组成部分。形式简单且具有物理意义的森林AGB估测模型对提高森林资源监测效率具有重要的意义。文章在已有研究基础上,提出了一种联合机载LiDAR提取的高度特征、森林郁闭度以及星载多光谱植被指数的森林AGB异速生长模型估测方法。以内蒙古根河市为试验区,基于2022年获取的LiDAR数据、哨兵2A多光谱数据以及邻近时间获得的样地数据,对比分析了LiDAR高度特征和多种植被指数与森林AGB的相关性,选择最优LiDAR高度特征与植被指数应用于所提出的模型(ModelBN),并与仅利用高度特征(ModelB)、高度特征与植被指数联合(ModelBY)、高度特征与郁闭度联合(ModelBHC)3种模型进行对比。结果表明: LiDAR高度特征中,90%高度分位数(H90)与研究区森林AGB的相关性最高; 所用植被指数中,核函数植被指数KNDVIrel与森林AGB的相关性最高。4种模型中,ModelBN模型具有最高的 R a d j 2值(0.78)和估测精度(83.25%)、最低的均方根误差(root mean squared error,RMSE)(15.87 t/hm2); ModelBN模型估测结果精度优于ModelBHC(R a d j 2EA分别提高0.05和1.75百分点,RMSE降低1.66 t/hm2),ModelBY模型估测结果精度优于ModelB(R a d j 2EA分别提高0.03和1.19百分点,RMSE降低1.12 t/hm2),说明植被指数作为指数幂的合理性; 虽然ModelBN模型并非所有像元的不确定性最低,但整体最优。总体来看,ModelBN模型精度最高,简单高效,且有一定的物理意义,可作为一种新的森林AGB估测技术手段,为森林资源监测提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁相元
陈尔学
赵磊
范亚雄
徐昆鹏
马云梅
关键词 森林AGB多源数据异速生长模型遥感估测    
Abstract

Forest aboveground biomass (AGB) serves as a significant indicator for monitoring forest resources and a crucial part of forest carbon stock. AGB estimation methods, characterized by simple models and physical significance, play a significant role in improving the monitoring efficiency of forest resources. Based on previous studies, this study proposed an allometric model method for AGB estimation by integrating the height features and forest canopy closure derived from the airborne light detection and ranging (LiDAR), and the vegetation indice derived from satellite multispectral data (also referred to as ModelBN). This study investigated Genhe City in Inner Mongolia using LiDAR data and Sentinel-2A multispectral data acquired in 2022, combined with sample plot data obtained around this period. By comparatively analyzing the correlations of LiDAR-derived height features and vegetation indices with AGB, this study applied optimal LiDAR-derived height features and vegetation indices to ModelBN. Finally, this model was compared with models using only height features (ModelB), integrating both height features and vegetation indices (ModelBY), and combining height features and canopy closure (ModelBHC). The results indicate that among the LiDAR-derived height features, the 90th height percentile (H90) exhibited the highest correlation with AGB in the study area. Among the vegetation indices, the kernel normalized difference vegetation index manifested the highest correlation with AGB. Among the four models, the ModelBN achieved the highest adjusted R-square value (R a d j 2, 0.78), the highest estimation accuracy (EA, 83.25 %), and the lowest root mean square error (RMSE, 15.87 t/m2). The ModelBN outperformed the ModelBHC, with improvements in R a d j 2 value and EA by 0.05 and 1.75 %, respectively, and a reduction in RMSE by 1.66 t/hm2. The ModelBY outperformed the ModelB, with improvements in R a d j 2 value and EA by 0.03 and 1.19 %, respectively, and a reduction in RMSE by 1.12 t/hm2. These results demonstrate the rationality of using vegetation indices as an exponential power. Despite the failure to possess the lowest uncertainty in all pixels, the ModelBN showed the optimal performance. Overall, the ModelBN demonstrates the highest accuracy, a simple and efficient process, and certain physical significance. Therefore, the ModelBN can function as a novel technique for AGB estimation to provide technical support for forest resource monitoring.

Key wordsaboveground biomass (AGB)    multi-source data    allometric model    remote sensing estimation
收稿日期: 2024-02-06      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:国家重点研发项目“多源遥感协同森林地上生物量估测技术”(2023YFF1303900)
通讯作者: 陈尔学(1968-),男,博士,研究员,主要从事雷达应用技术研究。Email: chenerx@ifrit.ac.cn
作者简介: 丁相元(1990-),男,博士,主要从事遥感技术与应用研究。Email: dxy4201@126.com
引用本文:   
丁相元, 陈尔学, 赵磊, 范亚雄, 徐昆鹏, 马云梅. 联合机载LiDAR和星载多光谱数据的森林地上生物量异速生长模型构建方法[J]. 自然资源遥感, 2025, 37(3): 123-132.
DING Xiangyuan, CHEN Erxue, ZHAO Lei, FAN Yaxiong, XU Kunpeng, MA Yunmei. An allometric model method for estimating forest aboveground biomass based on airborne LiDAR and satellite multispectral data. Remote Sensing for Natural Resources, 2025, 37(3): 123-132.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024061      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/123
Fig.1  研究区位置与样地分布示意图
LiDAR特征名称 特征符号 描述
均值 Hmean 25 m×25 m统计单元内点云高度均值
森林郁闭度 CD 25 m×25 m统计单元内冠层回波点云与全部回波点云的比值
最大值 Hmax 25 m×25 m统计单元内点云高度最大值
百分位数 H10,H20,…,H90,H95 不同高度点云百分位数
Tab.1  LiDAR数据特征
LiDAR 哨兵2A
特征 相关性 特征 相关性
H10 0.553***① NDVI 0.276**
H20 0.548*** NDVIre1 0.435***
H30 0.682*** NDVIre2 0.389***
H40 0.704*** KNDVI 0.347***
H50 0.731*** KNDVIre1 0.483***
H60 0.762*** KNDVIre2 0.427***
H70 0.806*** DVI 0.137*
H80 0.839*** EVI 0.243*
H90 0.860*** RVI 0.269**
H95 0.851*** SAVI 0.276**
Hmean 0.816***
Hmax 0.747***
CD 0.452***
Tab.2  特征与森林AGB相关系数
模型 拟合结果
ModelB 2.2061 H 90 1.450445
ModelBY 13.652738 H 90 2.613457 K N D V I r e 1
ModelBHC 10.21288 ( H 90 × C D ) 1.005704
ModelBN 23.82296 ( H 90 × C D ) 2.212977 K N D V I r e 1
Tab.3  模型拟合结果
Fig.2  模型估测结果精度评价
Fig.3-1  不同模型森林AGB估测结果与不确定性空间分布
Fig.3-2  不同模型森林AGB估测结果与不确定性空间分布
Fig.4  像元尺度不确定性变化
[1] Le Toan T, Quegan S, Davidson M W J, et al. The BIOMASS mission:Mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11):2850-2860.
[2] Chirici G, McRoberts R E, Fattorini L, et al. Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework[J]. Remote Sensing of Environment, 2016,174:1-9.
[3] 董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9):2825-2834.
doi: 10.13287/j.1001-9332.201809.014
Dong L H, Li F R. Stand-level biomass estimation models for the tree layer of main forest types in East Daxing’an Mountains,China[J]. Chinese Journal of Applied Ecology, 2018, 29(9):2825-2834.
doi: 10.13287/j.1001-9332.201809.014
[4] 娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感, 2011, 23(1):1-8.doi:10.6046/gtzyyg.2011.01.01.
Lou X T, Zeng Y, Wu B F. Advances in the estimation of above-ground biomass of forest using remote sensing[J]. Remote Sensing for Land and Resources, 2011, 23(1):1-8.doi:10.6046/gtzyyg.2011.01.01.
[5] de Almeida C T, Galvão L S, de Oliveira Cruz e Aragão L E, et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms[J]. Remote Sensing of Environment, 2019,232:111323.
[6] Gleason C J, Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012,125:80-91.
[7] 潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.
doi: 10.3969/j.issn.1000-2006.201811012
Pan L, Sun Y J, Wang Y F, et al. Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3):149-156.
[8] Puliti S, Hauglin M, Breidenbach J, et al. Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data[J]. Remote Sensing of Environment, 2020,236:111501.
[9] Du L M, Pang Y, Wang Q, et al. A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds[J]. Remote Sensing of Environment, 2023,290:113543.
[10] West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400(6745):664-667.
[11] 吴发云, 高显连, 周蓉, 等. 基于林分高度及郁闭度的森林生物量和蓄积量模型研究[J]. 林业资源管理, 2021(2):61-67.
Wu F Y, Gao X L, Zhou R, et al. Research on forest biomass and stock volume model based on stand height and canopy density[J]. Forest Resources Management, 2021(2):61-67.
[12] Alexander C, Korstjens A H, Hill R A. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models[J]. International Journal of Applied Earth Observation and Geoinformation, 2018,65:105-113.
[13] Chave J, Réjou-Méchain M, Búrquez A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Global Change Biology, 2014, 20(10):3177-3190.
doi: 10.1111/gcb.12629 pmid: 24817483
[14] Tao S L, Labrière N, Calders K, et al. Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning[J]. Annals of Forest Science, 2021, 78(4):103.
[15] Sarrus F, Rameaux J. Application des sciences accessoires et principalement des mathematiques a la physiologie generale[J]. Bull.Acad.R.Méd.Belg., 1839,3:1094-1110.
[16] Ahmad Anjum S, Xie X Y, Wang L C, et al. Morphological,physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research, 2011, 6(9):2026-2032.
[17] Gamon J A, Field C B, Goulden M L, et al. Relationships between NDVI,canopy structure,and photosynthesis in three Californian vegetation types[J]. Ecological Applications, 1995, 5(1):28-41.
[18] Rouse J, Haas R H, Deering D, et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[R]. Greenbelt,MD,USA, 1974.
[19] Green E P, Mumby P J, Edwards A J, et al. Estimating leaf area index of mangroves from satellite data[J]. Aquatic Botany, 1997, 58(1):11-19.
[20] Yang Q L, Su Y J, Hu T Y, et al. Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attri-butes and optical spectral indexes[J]. Forest Ecosystems, 2022,9:100059.
[21] Ni-Meister W, Lee S, Strahler A H, et al. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing[J]. Journal of Geophysical Research:Biogeosciences, 2010, 115(G2):G00E11.
[22] Coomes D A, Dalponte M, Jucker T, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data[J]. Remote Sensing of Environment, 2017,194:77-88.
[23] 李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3):64-72.
Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe,Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3):64-72.
[24] 张恒, 杨雨, 王柏杰, 等. 内蒙古大兴安岭森林可燃物燃烧释放PM2.5中水溶性离子排放特性[J]. 应用生态学报, 2021, 32(7):2316-2324.
doi: 10.13287/j.1001-9332.202107.003
Zhang H, Yang Y, Wang B J, et al. Emission characteristics of water-soluble ions in PM2.5 released by forest fuel combustion in Great Xing’an Mountains,Inner Mongolia,China[J]. Chinese Journal of Applied Ecology, 2021, 32(7):2316-2324.
[25] 李晓彤, 覃先林, 刘倩, 等. 基于AISA eagle Ⅱ机载高光谱数据的森林可燃物类型识别方法[J]. 遥感技术与应用, 2021, 36(3):544-551,570.
doi: 10.11873/j.issn.1004-0323.2021.3.0544
Li X T, Qin X L, Liu Q, et al. An identification method on forest fuel types based on AISA eagle Ⅱ hyperspectral data[J]. Remote Sensing Technology and Application, 2021, 36(3):544-551,570.
[26] 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量——生物量方程[M]. 北京: 科学出版社, 2018:58-60.
Zhou G Y, Yin G C, Tang X L, et al. Carbon storage-biomass equation of forest ecosystem in China[M]. Beijing: Science Press, 2018:58-60.
[27] Pang Y, Li Z Y, Ju H B, et al. LiCHy:The CAF’s LiDAR,CCD and hyperspectral integrated airborne observation system[J]. Remote Sensing, 2016, 8(5):398.
[28] McGaughey R J. FUSION/LDV:Software for LiDAR data analysis and visualization,January 2021-FUSION Version 4.20[EB/OL]. United stated of Department of Agriculture,Washington D C,2021. http://forsys.cfr.washington.edu/software/fusion/FUSION_manual.pdf(accessed16.6.2021).
[29] 曹林, 徐婷, 申鑫, 等. 集成Landsat OLI和机载LiDAR条带数据的亚热带森林生物量制图[J]. 遥感学报, 2016, 20(4):665-678.
Cao L, Xu T, Shen X, et al. Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests[J]. Journal of Remote Sensing, 2016, 20(4):665-678.
[30] Donoghue D N M, Watt P J, Cox N J, et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2007, 110(4):509-522.
[31] Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,129:32-40.
[32] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing, 1977,43:1541-1552
[33] Liu H Q, Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):457-465.
[34] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
[35] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
[36] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021, 7(9):eabc7447.
[37] Ma Q, Su Y J, Luo L P, et al. Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data[J]. Ecological Indicators, 2018,95:298-310.
[38] Gram J P. Om Konstruktion af Normal-Tilvæxtoversigter,med særligt Hensyn til Iagttagelserne fra Odsherred.Tidsskr[J]. Skovbrug, 1879,3:207-270.
[39] Hill A, Buddenbaum H, Mandallaz D. Combining canopy height and tree species map information for large-scale timber volume estimations under strong heterogeneity of auxiliary data and variable sample plot sizes[J]. European Journal of Forest Research, 2018, 137(4):489-505.
[40] Eggleston L, Buendia K, Miwa T. et al. 2006 IPCC guidelines for national greenhouse gas inventories,volume 4:Agriculture,forestry and other land use[J/OL]. Institute for Global Environmental Strategies, 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
[41] Saarela S, Wästlund A, Holmström E, et al. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data,accounting for tree-level allometric and LiDAR model errors[J]. Forest Ecosystems, 2020,7:43.
[42] McRoberts R E, Næsset E, Hou Z Y, et al. How many bootstrap replications are necessary for estimating remote sensing-assisted,model-based standard errors?[J]. Remote Sensing of Environment, 2023,288:113455.
[43] Saarela S, Schnell S, Grafström A, et al. Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume[J]. Canadian Journal of Forest Research, 2015, 45(11):1524-1534.
[44] Snowdon P. A ratio estimator for bias correction in logarithmic regressions[J]. Canadian Journal of Forest Research, 1991, 21(5):720-724.
[45] Schober P, Boer C, Schwarte L A. Correlation coefficients:Appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126(5):1763-1768.
[46] Guerini Filho M, Kuplich T M, De Quadros F L F. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data[J]. International Journal of Remote Sensing, 2020, 41(8):2861-2876.
[47] Frazer G W, Magnussen S, Wulder M A, et al. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass[J]. Remote Sensing of Environment, 2011, 115(2):636-649.
[48] Labrière N, Tao S L, Chave J, et al. In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10):3617-3627.
[49] Duncanson L, Kellner J R, Armston J, et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission[J]. Remote Sensing of Environment, 2022,270:112845.
[50] Cushman K C, Saatchi S, McRoberts R E, et al. Small field plots can cause substantial uncertainty in gridded aboveground biomass products from airborne lidar data[J]. Remote Sensing, 2023, 15(14):3509.
[51] Puliti S, Saarela S, Gobakken T, et al. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference[J]. Remote Sensing of Environment, 2018,204:485-497.
[52] Gong H D, Cheng Q P, Jin H Y, et al. Effects of temporal,spatial,and elevational variation in bioclimatic indices on the NDVI of different vegetation types in Southwest China[J]. Ecological Indicators, 2023,154:110499.
[53] Maxwell S K, Sylvester K M. Identification of “ever-cropped” land (1984—2010) using Landsat annual maximum NDVI image composites:Southwestern Kansas case study[J]. Remote Sensing of Environment, 2012,121:186-195.
[54] Korhonen L, Korpela I, Heiskanen J, et al. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover,angular ca-nopy closure and leaf area index[J]. Remote Sensing of Environment, 2011, 115(4):1065-1080.
[55] Ma Q, Su Y J, Guo Q H. Comparison of canopy cover estimations from airborne LiDAR,aerial imagery,and satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4225-4236.
[1] 冯磊, 王轶, 李文吉, 王彦佐, 郑向向, 王珊珊, 张玲. 三维地质灾害隐患识别业务平台研发与应用[J]. 自然资源遥感, 2024, 36(4): 321-327.
[2] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[3] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[4] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[5] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[6] 桑潇, 国巧真, 乔悦, 吴欢欢, 臧金龙. 基于多源数据的山西省长治市宜居性研究[J]. 国土资源遥感, 2020, 32(3): 200-207.
[7] 赵卫东, 郑勇, 章浩南, 姜琼, 卫佳佳. 基于多源数据的郯庐断裂带安徽段遥感解译及其空间分布特征[J]. 国土资源遥感, 2019, 31(4): 79-87.
[8] 张伟, 齐建伟, 陈颖, 韩旭. 多源国产高分卫星联合区域网平差精度分析研究[J]. 国土资源遥感, 2019, 31(1): 125-132.
[9] 赵展, 夏旺, 闫利. 基于多源数据的土地利用变化检测[J]. 国土资源遥感, 2018, 30(4): 148-155.
[10] 郑鸿瑞, 徐志刚, 甘乐, 陈玲, 杨金中, 杜培军. 合成孔径雷达遥感地质应用综述[J]. 国土资源遥感, 2018, 30(2): 12-20.
[11] 陈国茜, 祝存兄, 肖建设, 校瑞香. 青海高寒草地春季火情的多源卫星遥感动态监测[J]. 国土资源遥感, 2017, 29(4): 185-189.
[12] 王琰, 舒宁, 龚龑. 高分辨率遥感影像土地利用变化检测方法研究[J]. 国土资源遥感, 2012, 24(1): 43-47.
[13] 陈伟涛, 张志, 王焰新. 矿山开发及矿山环境遥感探测研究进展[J]. 国土资源遥感, 2009, 21(2): 1-8.
[14] 齐建伟, 朱德海, 杨清华. 西安市土地利用现状图更新中多源数据的应用[J]. 国土资源遥感, 2006, 18(1): 66-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发